Đang chuẩn bị liên kết để tải về tài liệu:
Luyện thi ĐH môn Toán: Nguyên hàm lượng giác (Phần 6) - Thầy Đặng Việt Hùng

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Tài liệu "Luyện thi ĐH môn Toán: Nguyên hàm lượng giác (Phần 6) - Thầy Đặng Việt Hùng" tóm lược nội dung cần thiết và cung cấp các bài tập ví dụ hữu ích, giúp các bạn củng cố và nắm kiến thức về nguyên hàm lượng giác thật hiệu quả. | Khóa học LTĐH môn Toán - Thầy ĐẶNG VIỆT HÙNG Facebook LyHung95 07. NGUYÊN HÀM LƯỢNG GIÁC - P6 Thầy Đặng Việt Hùng ĐVH x 1_ Dạng 7. Nguyên hàm dùng biên đôi vi phân d I tan 2 I A dx - - 7X 2cos2 2 1 í 2 1 Z 1 tan dx 21 2 I Cách giải o Xét nguyên hàm I1 dx f Asin x B cos x C Để tính nguyên hàm trên ta xét hai trường hợp Nếu C ự Á2 B2--- A sin x B cos x C A sin x B cos x yl A2 B2 sl A2 B2 cos x ọ a A2 B2 Á B2 cos x a ơ đây ta đã biết phép biến đôi lượng giác Asin x B cos x _ Va2 B2cos x p Khi đó I1 f . 1 f fx Á2 B2 cos x a vÁ2 B2 a á2 B2 cos x a 1 1 dx Va B2 J 2cos Ix 1 l 2 J -1 r dx Va2 B2 J 2sin fx 1 l 2 J Nếu C ựA2 B2 thì ta đặt t tanx 2 1. 1 dx 1í. 2 x 1 dt 1 tan dx 2 2 x 21 2 J cos 7 7 2 2t sin x - 1 11- ______1 -11 cos x -- 1 11- 2dt ìdx 1 11- Thay vào ta tính được I1 là nguyên hàm theo ân t. . . rg . í . n sin x cos x sl 2 sin I x l 4 czl n 2 cos I x- l 4 ĩsChú ý Một số công thức tính nhanh í . n 1 í n 3 sin x cos x 2 sin x 2 cos x - l 6 J l 3 í . n -2cos I x l 6 . n í n sin x -sj 3 cos x 2 sin I x - l 3 Ví dụ 1 ĐVH . Tính các nguyên hàm sau a I1 L. .1 - 7 sin x cos x sl 2 b I Ị Mỉ 5 3sin x - cos x - 2 c I f ỈL J 3sin x cos x 1 d I4 L _d . J sin x - cos x -1 Hướng dẫn giải dx a I1 sin x cos x s 2 Ta có a 12 12 2 í 1 . . 1 . sin x cos x 121 sin x j cos x W2 V2 S í n 2cos I x - l 4 Tham gia các gói học trực tuyến Pro S - Pro Adv môn Toán tại Moon.vn để hướng đến kì thi THPT Quốc gia Khóa học LTĐH môn Toán - Thầy ĐẶNG VIỆT HÙNG Facebook LyHung95 4 x n ì d I I f dx _ 1 1 dx _ 1 1 dx _ 1 1 28 _ 1 1 x n ì C 1- J.fi C n V2 J n V V2 S 2 x n V V2 Jo 2 x n V 41 31112 8 V2cos x--- I V2 1 cos x--- I 2cos I -T I 2cos --T I l 4 4 2 8 2 8 Vậy I1 _ U tan Ix - -1 C. 42 12 8 Bình luận Trong nguyên hàm trên ở biểu thức sinx cosx ta thống nhất chuyển về hàm cos để sử dụng công thức lượng giác . 2 a dx dx 1 cosa _ 2cos ---- _ 2 1 cos a 2 a 2cos 2 b Ta có 43 sin x - cos x _ 2 4Ỉ3 . 1 ì 2s111 x - 2cos x 12 2 í n ì -2cosI x 77 I. I 3 C dx J 43 sin x - cos x - 2 dx dx -2cosI x 77 I-2 3

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.