Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học: "Applying Machine Learning to Chinese Temporal Relation Resolution"

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Temporal relation resolution involves extraction of temporal information explicitly or implicitly embedded in a language. This information is often inferred from a variety of interactive grammatical and lexical cues, especially in Chinese. For this purpose, inter-clause relations (temporal or otherwise) in a multiple-clause sentence play an important role. In this paper, a computational model based on machine learning and heterogeneous collaborative bootstrapping is proposed for analyzing temporal relations in a Chinese multiple-clause sentence. The model makes use of the fact that events are represented in different temporal structures. . | Applying Machine Learning to Chinese Temporal Relation Resolution Wenjie Li Department of Computing The Hong Kong Polytechnic University Hong Kong cswjli@comp.polyu.edu.hk Guihong Cao Department of Computing The Hong Kong Polytechnic University Hong Kong csghcao@comp.polyu.edu.hk Abstract Temporal relation resolution involves extraction of temporal information explicitly or implicitly embedded in a language. This information is often inferred from a variety of interactive grammatical and lexical cues especially in Chinese. For this purpose inter-clause relations temporal or otherwise in a multiple-clause sentence play an important role. In this paper a computational model based on machine learning and heterogeneous collaborative bootstrapping is proposed for analyzing temporal relations in a Chinese multiple-clause sentence. The model makes use of the fact that events are represented in different temporal structures. It takes into account the effects of linguistic features such as tense aspect temporal connectives and discourse structures. A set of experiments has been conducted to investigate how linguistic features could affect temporal relation resolution. 1 Introduction In language studies temporal information describes changes and time of changes expressed in a language. Such information is critical in many typical natural language processing NLP applications e.g. language generation and machine translation etc. Modeling temporal aspects of an event in a written text is more complex than capturing time in a physical time-stamped system. Event time may be specified explicitly in a sentence e.g. ÍỀfl @ 1997 I Tit T W ffiR They solved the traffic problem of the city in 1997 or it may be left implicit to be recovered by readers from context. For example one may know that W W ÍỀfl @Tìẵ @W ffiR after the street bridge had been built they solved the traffic problem of the city yet without knowing the exact time when the street bridge was built. As reported by Partee

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.