Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học: "Learning to Win by Reading Manuals in a Monte-Carlo Framework"

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

This paper presents a novel approach for leveraging automatically extracted textual knowledge to improve the performance of control applications such as games. Our ultimate goal is to enrich a stochastic player with highlevel guidance expressed in text. Our model jointly learns to identify text that is relevant to a given game state in addition to learning game strategies guided by the selected text. | Learning to Win by Reading Manuals in a Monte-Carlo Framework S.R.K. Branavan David Silver Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology branavan regina @csail.mit.edu Regina Barzilay Department of Computer Science University College London d.silver@cs.ucl.ac.uk Abstract This paper presents a novel approach for leveraging automatically extracted textual knowledge to improve the performance of control applications such as games. Our ultimate goal is to enrich a stochastic player with high-level guidance expressed in text. Our model jointly learns to identify text that is relevant to a given game state in addition to learning game strategies guided by the selected text. Our method operates in the Monte-Carlo search framework and learns both text analysis and game strategies based only on environment feedback. We apply our approach to the complex strategy game Civilization II using the official game manual as the text guide. Our results show that a linguistically-informed game-playing agent significantly outperforms its language-unaware counterpart yielding a 27 absolute improvement and winning over 78 of games when playing against the built-in AI of Civilization II.1 1 Introduction In this paper we study the task of grounding linguistic analysis in control applications such as computer games. In these applications an agent attempts to optimize a utility function e.g. game score by learning to select situation-appropriate actions. In complex domains finding a winning strategy is challenging even for humans. Therefore human players typically rely on manuals and guides that describe promising tactics and provide general advice about the underlying task. Surprisingly such textual information has never been utilized in control algorithms despite its potential to greatly improve performance. 1The code data and complete experimental setup for this work are available at http groups.csail.mit.edu rbg code civ. The natural .

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.