Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học: "Learning Script Knowledge with Web Experiments"

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

We describe a novel approach to unsupervised learning of the events that make up a script, along with constraints on their temporal ordering. We collect naturallanguage descriptions of script-specific event sequences from volunteers over the Internet. Then we compute a graph representation of the script’s temporal structure using a multiple sequence alignment algorithm. The evaluation of our system shows that we outperform two informed baselines. | Learning Script Knowledge with Web Experiments Michaela Regneri Alexander Koller Manfred Pinkal Department of Computational Linguistics and Cluster of Excellence Saarland University Saarbrucken regneri koller pinkal @coli.uni-saarland.de Abstract We describe a novel approach to unsupervised learning of the events that make up a script along with constraints on their temporal ordering. We collect naturallanguage descriptions of script-specific event sequences from volunteers over the Internet. Then we compute a graph representation of the script s temporal structure using a multiple sequence alignment algorithm. The evaluation of our system shows that we outperform two informed baselines. 1 Introduction A script is a standardized sequence of events that describes some stereotypical human activity such as going to a restaurant or visiting a doctor Barr and Feigenbaum 1981 . Scripts are fundamental pieces of commonsense knowledge that are shared between the different members of the same culture and thus a speaker assumes them to be tacitly understood by a hearer when a scenario related to a script is evoked When one person says I m going shopping it is an acceptable reply to say did you bring enough money because the SHOPPING script involves a payment event which again involves the transfer of money. It has long been recognized that text understanding systems would benefit from the implicit information represented by a script Cullingford 1977 Mueller 2004 Miikkulainen 1995 . There are many other potential applications including automated storytelling Swanson and Gordon 2008 anaphora resolution McTear 1987 and information extraction Rau et al. 1989 . However it is also commonly accepted that the large-scale manual formalization of scripts is infeasible. While there have been a few attempts at doing this Mueller 1998 Gordon 2001 efforts in which expert annotators create script knowledge bases clearly don t scale. The same holds true of the script-like structures called

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.