Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học: "Learning to “Read Between the Lines” using Bayesian Logic Programs"

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Most information extraction (IE) systems identify facts that are explicitly stated in text. However, in natural language, some facts are implicit, and identifying them requires “reading between the lines”. Human readers naturally use common sense knowledge to infer such implicit information from the explicitly stated facts. | Learning to Read Between the Lines using Bayesian Logic Programs Sindhu Raghavan Raymond J. Mooney Hyeonseo Ku Department of Computer Science The University of Texas at Austin 1616 Guadalupe Suite 2.408 Austin TX 78701 USA sindhu mooney yorq @cs.utexas.edu Abstract Most information extraction IE systems identify facts that are explicitly stated in text. However in natural language some facts are implicit and identifying them requires reading between the lines . Human readers naturally use common sense knowledge to infer such implicit information from the explicitly stated facts. We propose an approach that uses Bayesian Logic Programs BLPs a statistical relational model combining first-order logic and Bayesian networks to infer additional implicit information from extracted facts. It involves learning uncertain commonsense knowledge in the form of probabilistic first-order rules from natural language text by mining a large corpus of automatically extracted facts. These rules are then used to derive additional facts from extracted information using BLP inference. Experimental evaluation on a benchmark data set for machine reading demonstrates the efficacy of our approach. 1 Introduction The task of information extraction IE involves automatic extraction of typed entities and relations from unstructured text. IE systems Cowie and Lehnert 1996 Sarawagi 2008 are trained to extract facts that are stated explicitly in text. However some facts are implicit and human readers naturally read between the lines and infer them from the stated facts using commonsense knowledge. Answering many queries can require inferring such implicitly stated facts. Consider the text Barack Obama is the 349 president of the United States of America. Given the query Barack Obama is a citizen of what country standard IE systems cannot identify the answer since citizenship is not explicitly stated in the text. However a human reader possesses the commonsense knowledge that the president of a .

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.