Đang chuẩn bị liên kết để tải về tài liệu:
ĐỒ THỊ PHẲNG VÀ TÔ MÀU ĐỒ THỊ - PHẦN 1

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Tham khảo tài liệu 'đồ thị phẳng và tô màu đồ thị - phần 1', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | ĐÒ THỊ PHẲNG VÀ TÔ MÀU ĐÒ THỊ - PHẦN 1 Từ xa xưa đã lưu truyền một bài toán cổ Ba nhà ba giếng Có ba nhà ở gần ba cái giếng nhưng không có đường nối thẳng các nhà với nhau cũng như không có đường nối thẳng các giếng với nhau. Có lần bất hoà với nhau họ tìm cách làm các đường khác đến giếng sao cho các đường này đôi một không giao nhau. Họ có thực hiện được ý định đó không Bài toán này có thể được mô hình bằng đồ thị phân đôi đầy đủ K3 3. Câu hỏi ban đầu có thể diễn đạt như sau Có thể vẽ K3 3 trên một mặt phẳng sao cho không có hai cạnh nào cắt nhau Trong chương này chúng ta sẽ nghiên cứu bài toán có thể vẽ một đồ thị trên một mặt phẳng không có các cạnh nào cắt nhau không. Đặc biệt chúng ta sẽ trả lời bài toán ba nhà ba giếng. Thường có nhiều cách biểu diễn đồ thị. Khi nào có thể tìm được ít nhất một cách biểu diễn đồ thị không có cạnh cắt nhau 7.1. ĐÒ THỊ PHẲNG. 7.1.1. Định nghĩa Một đồ thị được gọi là phẳng nếu nó có thể vẽ được trên một mặt phẳng mà không có các cạnh nào cắt nhau ở một điểm không phải là điểm mút của các cạnh . Hình vẽ như thế gọi là một biểu diễn phẳng của đồ thị. Một đồ thị có thể là phẳng ngay cả khi nó thường được vẽ với những cạnh cắt nhau vì có thể vẽ nó bằng cách khác không có các cạnh cắt nhau. Thí dụ 1 1 Một cây một chu trình đơn là một đồ thị phẳng. 2 K4 là đồ thị phẳng bởi vì có thể vẽ lại như hình bên không có đường cắt nhau Đồ thị K4 ------ K4 vẽ không có đường cắt nhau 3 Xét đồ thị G như trong hình a dưới đây. Có thể biểu diễn G một cách khác như trong hình b trong đó b hai cạnh nào cũng không cắt nhau. e d 4 Đồ thị đầy đủ K5 là một thí dụ về đồ thị không phẳng xem Định lý 7.2.2 . 7.1.2. Định nghĩa Cho G là một đồ thị phẳng. Mỗi phần mặt phẳng giới hạn bởi một chu trình đơn không chứa bên trong nó một chu trình đơn khác gọi là một miền hữu hạn của đồ thị G. Chu trình giới hạn miền là biên của miền. Mỗi đồ thị phẳng liên thông có một miền vô hạn duy nhất là phần mặt phẳng bên ngoài tất cả các miền hữu hạn . Số cạnh ít nhất tạo thành

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.