Đang chuẩn bị liên kết để tải về tài liệu:
Tóm tắt Luận án tiến sĩ Toán học: Bài toán tựa cân bằng dạng Blum – Oettli tổng quát và ứng dụng

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Mục tiêu của luận án là ứng dụng những kết quả ở (1), chúng tôi nghiên cứu sự tồn tại nghiệm của một số bài toán liên quan: Bài toán tựa cân bằng suy rộng loại I, Bài toán tựa cân bằng suy rộng loại II và Bài toán tựa cân bằng suy rộng hỗn hợp | Tóm tắt Luận án tiến sĩ Toán học: Bài toán tựa cân bằng dạng Blum – Oettli tổng quát và ứng dụng ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM —————————————————— NGUYỄN QUỲNH HOA BÀI TOÁN TỰA CÂN BẰNG DẠNG BLUM - OETTLI TỔNG QUÁT VÀ ỨNG DỤNG Ngành: Toán Giải tích Code: 9460102 TÓM TẮT LUẬN ÁN TIẾN SĨ TOÁN HỌC THÁI NGUYÊN - 2018 Công trình được hoàn thành tại: Trường Đại học Sư phạm - Đại học Thái Nguyên Người hướng dẫn khoa học: GS.TSKH. Nguyễn Xuân Tấn Phản biện 1: Phản biện 2: Phản biện 3: Luận án sẽ được bảo vệ trước Hội đồng chấm luận án cấp trường họp tại: Trường Đại học Sư phạm - Đại học Thái Nguyên. Vào hồi . giờ . ngày . tháng . năm 2018 Có thể tìm hiểu luận án tại thư viện: - Thư viện Quốc gia Việt Nam - Trung tâm học liệu – Đại học Thái Nguyên - Thư viện trường Đại học Sư phạm – Đại học Thái Nguyên 1 Mở đầu Khi nghiên cứu các hiện tượng trong tự nhiên và xã hội, cũng như trong các ngành khoa học, chúng ta thường gặp những câu hỏi: Tồn tại hay không tồn tại? Tồn tại như thế nào? Theo thuật ngữ toán học, câu hỏi thứ nhất làm ta liên hệ với sự tồn tại hay không tồn tại nghiệm của phương trình, bài toán được phát biểu như sau: Tìm x ∈ D sao cho F (x) = 0, (1) trong đó, D là tập con khác rỗng của không gian X và F là ánh xạ đi từ D vào không gian tuyến tính Y . Bài toán này còn được gọi là phương trình toán tử. Câu hỏi thứ hai, trong toán học, ta có thể liên hệ với bài toán: Tìm x ∈ D sao cho f (x) ≤ f (x), với mọi x ∈ D, (2) với D là tập con của không gian X và f là hàm số từ tập D vào không gian các số thực R. Bài toán này còn được gọi là bài toán tối ưu. Bài toán (1) và (2) đóng vai trò quan trọng trong việc ứng dụng toán học vào giải

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.