Đang chuẩn bị liên kết để tải về tài liệu:
Chứng minh một số trường hợp riêng của giả thuyết Minkowski

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Bài viết tập trung chứng minh một vài trường hợp riêng của giả thuyết Minkowski về bài toán "Số điểm của một lưới nguyên nằm trong một tập compact lồi trong không gian Euclide R^n". | CHỨNG MINH MỘT SỐ TRƯỜNG HỢP RIÊNG CỦA GIẢ THUYẾT MINKOWSKI Nguyễn Thanh Phong - Trần Ngọc Quốc1 Tóm tắt: Trong bài báo này, chúng tôi chứng minh một vài trường hợp riêng của giả thuyết Minkowski về bài toán "Số điểm của một lưới nguyên nằm trong một tập compact lồi trong không gian Euclide Rn ". Từ khóa: Lattices, Minkowski’s theorem, Minkowski’s conjecture. 1. Giới thiệu Một trong những vấn đề cơ bản của Hình học số là nghiên cứu số điểm chung của một lưới nguyên với một tập đo được trong Rn . Nếu C là tập compact lồi, phần trong khác rỗng, đối xứng nhau qua gốc tọa độ thì Hermann Minkowski phỏng đoán rằng số điểm chung của một lưới nguyên Λ và C là một số hữu hạn và số điểm chung là một hàm đếm G(C, Λ) = card(C ∩ Λ) bị chặn trên. Trong bài báo này, chúng tôi sẽ giới thiệu lại giả thuyết Minkowski và kiểm chứng kết quả đúng trong một số trường hợp riêng. 2. Kiến thức chuẩn bị Trong bài báo này, Rn là không gian Euclide với tích vô hướng được định nghĩa n X x, y = xi y i . i=1 Định nghĩa 2.1. Cho {λ1 , . . . , λn } là họ các vectơ độc lập tuyến tính trong Rn . Tập hợp tất cả các điểm x = u1 λ1 + · · · + un λn với {u1 , . . . , un } là họ những số nguyên, được gọi là một lưới nguyên trong Rn của cơ sở {λ1 , . . . , λn }, ký hiệu Λ := Zλ1 + · · · + Zλn , với Z là tập hợp các số nguyên. Định nghĩa 2.2. Cho Λ là lưới nguyên trong Rn và C là tập compact lồi, phần trong khác rỗng, đối xứng nhau qua gốc tọa độ. Số thực λi (C, Λ) = inf{r ∈ R∗+ / rC chứa ít nhất i điểm độc lập tuyến tính của Λ}, ở đây i ∈ N, 1 ≤ i ≤ n và rC = {rx với x ∈ C}, được gọi là cực tiểu thứ tự thứ i của lưới nguyên Λ tương ứng với tập C. 1 Trường Đại học Quảng Nam CHỨNG MINH MỘT SỐ TRƯỜNG HỢP RIÊNG CỦA GIẢ THUYẾT MINKOWSKI Nhận xét 2.3. Cho Λ là lưới nguyên trong không gian Rn và C là tập compact lồi, phần trong khác rỗng, đối xứng nhau qua gốc tọa độ. Khi đó, ta có 0 < λ1 (C, Λ) ≤ λ2 (C, Λ) ≤ · · · ≤ λn (C, Λ) < +∞. Nhận xét 2.4. Cho Λ là lưới nguyên trong không gian Rn và C là tập .

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.