Đang chuẩn bị liên kết để tải về tài liệu:
On orthogonal generalized derivations of semiprime rings

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

In this paper, we present some results concerning two generalized derivations on a semiprime ring. These results are a generalization of results of M. Bresar and J. Vukman, which are related to a theorem of E. Posner for the product of derivations on a prime ring. | Turk J Math 28 (2004) , 185 – 194. ¨ ITAK ˙ c TUB On Orthogonal Generalized Derivations of Semiprime Rings Nurcan Arga¸c, Atsushi Nakajima and Emine Alba¸s Abstract In this paper, we present some results concerning two generalized derivations on a semiprime ring. These results are a generalization of results of M. Bre˘sar and J. Vukman in [2], which are related to a theorem of E. Posner for the product of derivations on a prime ring. Key words and phrases: derivation, orthogonal derivations, generalized derivation, orthogonal generalized derivations, prime ring, semiprime ring. 1. Introduction Throughout R will represent an associative ring. R is said to be 2-torsion free if 2x = 0, x ∈ R implies x = 0. Recall that R is prime if xRy = 0 implies x = 0 or y = 0, and R is semiprime if xRx = 0 implies x = 0. An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. In [1], Bre˘sar defined the following notion. An additive mapping D : R → R is said to be a generalized derivation if there exists a derivation d : R → R such that D(xy) = D(x)y + xd(y) for all x, y ∈ R. 1991 AMS Mathematics Subject Classification: 16W25 This paper is dedicated to the memory of Professor Mehmet Sapanci 185 ARGAC ¸ , NAKAJIMA, ALBAS ¸ Hence the concept of a generalized derivation covers both the concepts of a derivation and of a left multiplier ( i.e., an additive map f satisfying f(xy) = f(x)y for all x, y ∈ R). This notion is found in P. Ribenboim [8], where some module structure of these higher generalized derivations was treated. Other properties of generalized derivations were given by B. Hvala [3], T.K. Lee [4] and the second author [5], [6] and [7]. We note that for a semiprime ring R, if D is a function from R to R and d : R → R is an additive mapping such that D(xy) = D(x)y+xd(y) for all x, y ∈ R, then D is uniquely determined by d and moreover d must be a derivation by [[1], Remark 1]. Let d : R → R be a derivation and a an .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.