Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Chương 2 của bài giảng Xử lý tín hiệu số tập trung trình bày về biến đổi Z và ứng dụng vào hệ thống LTI rời rạc. Chương này gồm có 5 bài học với các nội dung như: Biến đổi Z, các tính chất biến đổi Z, biến đổi Z ngược, hàm truyền đạt của hệ LTI rời rạc, giải PTSP dùng biến đổi Z 1 phía. | Chương 2: BIẾN ĐỔI Z VÀ ỨNG DỤNG VÀO HỆ THỐNG LTI RỜI RẠC Bài 1 BIẾN ĐỔI Z Bài 2 CÁC TÍNH CHẤT BIẾN ĐỔI Z Bài 3 BIẾN ĐỔI Z NGƯỢC Bài 4 HÀM TRUYỀN ĐẠT CỦA HỆ LTI RỜI RẠC Bài 5 GIẢI PTSP DÙNG BIẾN ĐỔI Z 1 PHÍA Nếu x(n) nhân quả thì : (*) (**) Ký hiệu: x(n) X(z) hay X(z) = Z{x(n)} X(z) x(n) hay x(n) = Z-1{X(z)} BÀI 1 BIẾN ĐỔI Z 1. ĐỊNH NGHĨA BIẾN ĐỔI Z: Biểu thức (*) còn gọi là biến đổi Z hai phía Biến đổi Z của dãy x(n): Biến đổi Z 1 phía dãy x(n): (*) (**) Trong đó Z – biến số phức Miền hội tụ của biến đổi Z - ROC (Region Of Convergence) là tập hợp tất cả các giá trị Z nằm trong mặt phẳng phức sao cho X(z) hội tụ. 2. MIỀN HỘI TỤ CỦA BIẾN ĐỔI Z (ROC) 0 0 Im(Z) Re(z) Rx+ Rx- ROC Để tìm ROC của X(z) ta áp dụng tiêu chuẩn Cauchy Tiêu chuẩn Cauchy: Một chuỗi có dạng: hội tụ nếu: Ví dụ 1: Tìm biến đổi Z & ROC của: Giải: 0 ROC Im(z) Re(z) /a/ Theo tiêu chuẩn Cauchy, X(z) sẽ hội tụ: Nếu: Vậy: 0 ROC Im(z) Re(z) /a/ Ví dụ 2: Tìm biến đổi Z & ROC của: Giải: Theo tiêu chuẩn Cauchy, X(z) sẽ hội . | Chương 2: BIẾN ĐỔI Z VÀ ỨNG DỤNG VÀO HỆ THỐNG LTI RỜI RẠC Bài 1 BIẾN ĐỔI Z Bài 2 CÁC TÍNH CHẤT BIẾN ĐỔI Z Bài 3 BIẾN ĐỔI Z NGƯỢC Bài 4 HÀM TRUYỀN ĐẠT CỦA HỆ LTI RỜI RẠC Bài 5 GIẢI PTSP DÙNG BIẾN ĐỔI Z 1 PHÍA Nếu x(n) nhân quả thì : (*) (**) Ký hiệu: x(n) X(z) hay X(z) = Z{x(n)} X(z) x(n) hay x(n) = Z-1{X(z)} BÀI 1 BIẾN ĐỔI Z 1. ĐỊNH NGHĨA BIẾN ĐỔI Z: Biểu thức (*) còn gọi là biến đổi Z hai phía Biến đổi Z của dãy x(n): Biến đổi Z 1 phía dãy x(n): (*) (**) Trong đó Z – biến số phức Miền hội tụ của biến đổi Z - ROC (Region Of Convergence) là tập hợp tất cả các giá trị Z nằm trong mặt phẳng phức sao cho X(z) hội tụ. 2. MIỀN HỘI TỤ CỦA BIẾN ĐỔI Z (ROC) 0 0 Im(Z) Re(z) Rx+ Rx- ROC Để tìm ROC của X(z) ta áp dụng tiêu chuẩn Cauchy Tiêu chuẩn Cauchy: Một chuỗi có dạng: hội tụ nếu: Ví dụ 1: Tìm biến đổi Z & ROC của: Giải: 0 ROC Im(z) Re(z) /a/ Theo tiêu chuẩn Cauchy, X(z) sẽ hội tụ: Nếu: Vậy: 0 ROC Im(z) Re(z) /a/ Ví dụ 2: Tìm biến đổi Z & ROC của: Giải: Theo tiêu chuẩn Cauchy, X(z) sẽ hội tụ: Nếu: BÀI 2 CÁC TÍNH CHẤT BIẾN ĐỔI Z 1) Tuyến tính Giải: Nếu: Thì: Ví dụ 1: Tìm biến đổi Z & ROC của: với ROC chứa R1 R2 Áp dụng tính chất tuyến tính, ta được: 0 ROC Im(z) Re(z) /a/ 0 ROC Im(z) Re(z) /b/ 0 ROC Im(z) Re(z) /b/ /a/ Theo ví dụ 1 và 2, ta có: 2) Dịch theo thời gian trừ giá trị z=0, khi n0>0 trừ giá trị z=∞, khi n0<0 Ví dụ 3: Tìm biến đổi Z & ROC của: Nếu: Thì: Với: Giải: Theo ví dụ 1: Vậy: 3) Nhân với hàm mũ an Giải: Nếu: Thì: Ví dụ 4: Xét biến đổi Z & ROC của: và 4) Đạo hàm X(z) theo z Giải: Theo ví dụ 1: Nếu: Thì: Ví dụ 5: Tìm biến đổi Z & ROC của: 5) Đảo biến số Nếu: Thì: Ví dụ 6: Tìm biến đổi Z & ROC của: Giải: Theo ví dụ 1: Áp dụng tính chất đảo biến số: 6) Liên hiệp phức 7) Tích 2 dãy 8) Định lý giá trị đầu Nếu x(n) nhân quả thì: Nếu: Thì: Nếu: Thì: Ví dụ 7: Tìm x(0), biết X(z)=e1/z và x(n) nhân quả Giải: 9) Tích chập 2 dãy ;ROC có chứa R1 R2 Thì: Nếu: Theo định lý giá trị đầu: Z-1 Ví dụ 8: Tìm y(n) = x(n)*h(n), biết: Giải: TỔNG KẾT CÁC TÍNH CHẤT BIẾN ĐỔI Z x(n)