Đang chuẩn bị liên kết để tải về tài liệu:
201 Bài tập phương trình vi phân

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

tài liệu "201 Bài tập phương trình vi phân" sau đây. Tài liệu ngoài việc cung cấp các dạng bài tập toán phương trình vi phân hữu ích còn kèm theo hướng dẫn giải cho từng bài cụ thể, giúp các bạn dễ dàng kiểm tra và ôn tập hiệu quả hơn. | www.VNMATH.com 1 . . ` ˆ ˆ BAI TAP PHU O NG TR` INH VI PHAN . 1) . . ' nh: Giai phu o ng tr 2xy y” = y 2 − 1 2xpp = p2 − 1 √ dx 2pdp . 2 V i x(p − 1) = 0 ta co : o = ⇔ p2 − 1 = C1 ⇔ p = ± C1 x + 1 p2 − 1 x √ dy 2 3 p= = C1 + 1 ⇒ y = (C1 x + 1) 2 + C2 dx 3C1 ’ HD giai: - Dat . y =p: 2) . . ' Giai phu o ng tr nh: √ y.y” = y ’ HD giai: . V i o - Dat . y = p ⇒ y” = p dp dy . . '. nh tro thanh: (ham theo y). Phu o ng tr √ yp dp =p dy p=0 . . . . ta d u o c phu o ng tr . nh: dy dy √ √ = 2 y + C1 ⇒ dp = √ ⇒ p = 2 y + C1 ⇔ y dx dy dx = √ 2 y + C1 . ' e o T d nghi^m t^ ng qua t: u o . Ngoai ra x= √ y− C1 √ ln |2 y + C1 | + C2 2 y = c: ~ h ng cu ng la nghi^m. a e . 3) . . ' nh: Giai phu o ng tr a(xy + 2y) = xyy ’ HD giai: a(xy + 2y) = xyy ⇒ x(a − y)y = −2ay N^ u e y = 0, . . . . . . . ta co phu o ng tr nh tu o ng d u o ng v i o ~ cu ng la nghi^m. e . 2a a−y dy = − dx ⇔ x2a y a e−y = C y x Ngoai ra y=0 4) . . ' nh: Giai phu o ng tr y” = y ey ’ HD giai: . V ip o . V i o - Dat . y = p ⇒ y” = p dp dy . . thay vao phu o ng tr nh: p dp = pey dy ey dy y ) = − ey + C1 C1 1 ln(ey + C1 ) C1 dy dy dp = ey ⇔ p = ey + C1 ⇒ = ey + C1 ⇔ y = dx dy dx e + C1 1 1 dy ey + C1 − ey = dy = (y − C1 = 0 ta co : ey + C1 C1 ey + 1 C1 =0: ´ nˆ u C1 = 0 e ´ nˆ u C1 = 0. e −e−y dx . nhu v^y: a = 1 . ey + C1 (y − ln |ey + C1 |) C1 Ngoai ra y = C : h ng la m^t nghi^m a o e . . 5) . . ' Giai phu o ng tr nh: xy = y(1 + ln y − ln x) . v i o y(1) = e 2 www.VNMATH.com y y (1 + ln ), d at y = zx d u.o.c: xz = z ln z . . x x dx y dz = ⇒ ln z = Cx hay ln = Cx ⇔ y = xeCx • z ln z = 0 ⇒ z ln z x x y(1) = e → C = 1. V^y y = xex a . ’ HD giai: . . - . Du a phu o ng tr nh v^: e y = 6) . . ' Giai phu o ng tr nh: y”(1 + y) = y 2 + y ’ HD giai: - Dat . y = z(y) ⇒ z = z dz dy . . thay vao phu o ng tr nh: dy dz = z+1 y+1 ⇒ z + 1 = C1 (y + 1) ⇒ z = C1 y + C1 − 1 ⇔ • C1 = 0 ⇒ (∗) • C1 = 0 ⇒ (∗) Ngoai ra cho cho dy = dx (∗) C1 y +

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.