Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Mời các bạn học sinh, sinh viên cùng tìm hiểu "Đáp án đề thi tuyển sinh đại học môn Toán (năm 2011): Khối B" của Bộ giáo dục và đào tạo dành cho các bạn học khối A. Đáp án thang điểm gồm có 4 trang. Cùng tìm hiểu để nắm bắt nội dung thông tin tài liệu. | BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐÁPÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Môn TOÁN Khối B Đáp án - thang điểm gồm 04 trang ĐÁP ÁN - THANG ĐIỀM Câu Đáp án Điểm I 2 0 điểm 1. 1 0 điểm Khi m 1 ta có y x4 - 4x2 1. Tập xác định D R. Sự biến thiên - Chiều biến thiên y 4x3 - 8x y 0 X 0 hoặc X 5 2. Hàm số nghịch biến trên các khoảng - - V2 và 0 V2 đồng biến trên các khoảng -a 2 0 và ạ 2 . - Cực trị Hàm số đạt cực tiểu tại x 5 2 ycT - 3 đạt cực đại tại x 0 yCĐ 1. 0 25 0 25 - Giới hạn lim y lim y ra. x - x - Bảng biến thiên x - x -V2 0 V2 _y 0 0 - 0 TC r1x TC y -3X -3 0 25 Đồ thị y 0 25 2. 1 0 điểm y x 4x3 - 4 m 1 x 4x x2 - m - 1 y x 0 x 0 hoặc x2 m 1 1 . 0 25 Đồ thị hàm số có ba điểm cực trị khi và chỉ khi 1 có hai nghiệm phân biệt khác 0 m - 1 . 0 25 0 25 Khi đó H 0 m B m 1 - m2 - m - 1 và C yỊm 1 - m2 - m - 1 . Suy ra OA BC m2 4 m 1 m2 - 4m -4 0 m 2 2V2 thỏa mãn . Vậy giá trị cần tìm m 2 -2V2 hoặc m 2 2V2. 0 25 II 2 0 điểm 1. 1 0 điểm Phương trình đã cho tương đương với sinx 1 cos2x sinxcosx cos2x sinx cosx 0 25 0 25 cos2x sinx - 1 cosx sinx - 1 0 sinx - 1 cos2x cosx 0 1 _ n sinx 1 x k2n. 2 0 25 cos2x - cosx cos n - x x -3- k 3n. Vậy phương trình đã cho có nghiệm x n k2n x n k n k e Z . 0 25 Trang 1 4 Câu Đáp án Điểm 2. 1 0 điểm Điều kiện - 2 x 2 . Khi đó phương trình đã cho tương đương 3 V2 x - 2s 2 - x 4 4 - x2 10 -3x 1 . Đặt t y 2 x - 2 2-x 1 trở thành 3t t2 t 0 hoặc t 3. t 0 suy ra V2 x 2 5 2-x 2 x 4 2 - x x 5 thỏa mãn . t 3 suy ra 5 2 x 2y 2-x 3 vô nghiệm do 5 2 x 2 và 2 5 2-x 3 3 với mọi x e - 2 2 . Vậy phương trình đã cho có nghiệm x 5. 0 25 0 25 0 25 0 25 III 1 0 điểm n n n 31 x sin x 3 1 3 x sin x I I 2 dx I ax I dx. 0 cos x 0 cos x 0 cos x n Ta có I 12 0 cos x n dx tan x 03 n n n 3 x sin x . 3 . 1 x 3 và dx Ix d l Ux I n 2n 1K - 1 1 dsin x 3 2 0 V sin x -1 sin x 1 n n 3 dx 2n 3 dsin x cos x 3 0 sin2 x -1 0 25 0 25 0 25 2n 1 ._ -I ln 3 2 V sin x -1 sin x 1 n ------ ln 2 - V3 . Vậy I 5 3 ln 2 -5 3 . 0 3 3 0 25 IV 1 0 điểm Gọi O là giao điểm của AC