Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học: "Error Mining for Wide-Coverage Grammar Engineering"

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Parsing systems which rely on hand-coded linguistic descriptions can only perform adequately in as far as these descriptions are correct and complete. The paper describes an error mining technique to discover problems in hand-coded linguistic descriptions for parsing such as grammars and lexicons. By analysing parse results for very large unannotated corpora, the technique discovers missing, incorrect or incomplete linguistic descriptions. The technique uses the frequency of n-grams of words for arbitrary values of n. It is shown how a new combination of suffix arrays and perfect hash finite automata allows an efficient implementation. . | Error Mining for Wide-Coverage Grammar Engineering Gertjan van Noord Alfa-informatica University of Groningen POBox716 9700 AS Groningen The Netherlands vannoord@let.rug.nl Abstract Parsing systems which rely on hand-coded linguistic descriptions can only perform adequately in as far as these descriptions are correct and complete. The paper describes an error mining technique to discover problems in hand-coded linguistic descriptions for parsing such as grammars and lexicons. By analysing parse results for very large unannotated corpora the technique discovers missing incorrect or incomplete linguistic descriptions. The technique uses the frequency of n-grams of words for arbitrary values of n. It is shown how a new combination of suffix arrays and perfect hash finite automata allows an efficient implementation. 1 Introduction As we all know hand-crafted linguistic descriptions such as wide-coverage grammars and large scale dictionaries contain mistakes and are incomplete. In the context of parsing people often construct sets of example sentences that the system should be able to parse correctly. If a sentence cannot be parsed it is a clear sign that something is wrong. This technique only works in as far as the problems that might occur have been anticipated. More recently tree-banks have become available and we can apply the parser to the sentences of the tree-bank and compare the resulting parse trees with the gold standard. Such techniques are limited however because treebanks are relatively small. This is a serious problem because the distribution of words is Zipfian there are very many words that occur very infrequently and the same appears to hold for syntactic constructions. In this paper an error mining technique is described which is very effective at automatically discovering systematic mistakes in a parser by using very large but unannotated corpora. The idea is very simple. We run the parser on a large set of sentences and then analyze those sentences

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.