Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học: "Multi-domain Sentiment Classification"

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

This paper addresses a new task in sentiment classification, called multi-domain sentiment classification, that aims to improve performance through fusing training data from multiple domains. To achieve this, we propose two approaches of fusion, feature-level and classifier-level, to use training data from multiple domains simultaneously. Experimental studies show that multi-domain sentiment classification using the classifier-level approach performs much better than single domain classification (using the training data individually). . | Multi-domain Sentiment Classification Shoushan Li and Chengqing Zong National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing 100190 China sshanli cqzong @nlpr.ia.ac.cn Abstract This paper addresses a new task in sentiment classification called multi-domain sentiment classification that aims to improve performance through fusing training data from multiple domains. To achieve this we propose two approaches of fusion feature-level and classifier-level to use training data from multiple domains simultaneously. Experimental studies show that multi-domain sentiment classification using the classifier-level approach performs much better than single domain classification using the training data individually . 1 Introduction Sentiment classification is a special task of text categorization that aims to classify documents according to their opinion of or sentiment toward a given subject e.g. if an opinion is supported or not Pang et al. 2002 . This task has created a considerable interest due to its wide applications. Sentiment classification is a very domainspecific problem training a classifier using the data from one domain may fail when testing against data from another. As a result real application systems usually require some labeled data from multiple domains guaranteeing an acceptable performance for different domains. However each domain has a very limited amount of training data due to the fact that creating large-scale high-quality labeled corpora is difficult and time-consuming. Given the limited multi-domain training data an interesting task arises how to best make full use of all training data to improve sentiment classification performance. We name this new task multi-domain sentiment classification . In this paper we propose two approaches to multi-domain sentiment classification. In the first called feature-level fusion we combine the feature sets from all the domains into one feature set. Using the unified .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.