Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học: "Multi-Task Active Learning for Linguistic Annotations"

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

We extend the classical single-task active learning (AL) approach. In the multi-task active learning (MTAL) paradigm, we select examples for several annotation tasks rather than for a single one as usually done in the context of AL. We introduce two MTAL metaprotocols, alternating selection and rank combination, and propose a method to implement them in practice. We experiment with a twotask annotation scenario that includes named entity and syntactic parse tree annotations on three different corpora. . | Multi-Task Active Learning for Linguistic Annotations Roi Reichart1 Katrin Tomanek2 Udo Hahn2 Ari Rappoport1 institute of Computer Science Hebrew University of Jerusalem Israel roiri arir @cs.huj i.ac.il Jena University Language Information Engineering Julie Lab Friedrich-Schiller-Universitat Jena Germany katrin.tomanek udo.hahn @uni-jena.de Abstract We extend the classical single-task active learning AL approach. In the multi-task active learning MTAL paradigm we select examples for several annotation tasks rather than for a single one as usually done in the context of AL. We introduce two MTAL metaprotocols alternating selection and rank combination and propose a method to implement them in practice. We experiment with a two-task annotation scenario that includes named entity and syntactic parse tree annotations on three different corpora. MTAL outperforms random selection and a stronger baseline onesided example selection in which one task is pursued using AL and the selected examples are provided also to the other task. 1 Introduction Supervised machine learning methods have successfully been applied to many NLP tasks in the last few decades. These techniques have demonstrated their superiority over both hand-crafted rules and unsupervised learning approaches. However they require large amounts of labeled training data for every level of linguistic processing e.g. POS tags parse trees or named entities . When when domains and text genres change e.g. moving from commonsense newspapers to scientific biology journal articles extensive retraining on newly supplied training material is often required since different domains may use different syntactic structures as well as different semantic classes entities and relations . Both authors contributed equally to this work. Consequently with an increasing coverage of a wide variety of domains in human language technology HLT systems we can expect a growing need for manual annotations to support many kinds of .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.