Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Mô hình quang phổ cho tiếp xúc với đánh giá của cá chất gây ô nhiễm Donald C. Malins, Virginia M. xanh, Naomi K. Gilman, và Katie M. Anderson Tây Bắc Thái Bình Dương Viện nghiên cứu John lỗ J. Stegeman Woods Nội dung Viện Hải dương học Vật liệu giới thiệu mô Thiết bị và thiết bị Thiết bị khai thác DNA và thiết bị cho FT-IR Thủ tục khai thác phân tích quang phổ DNA FT-IR quang phổ cân nhắc khác thống kê phân tích FT-IR là phổ Thành phần chính phân tích kết quả từ DNA chỉ số thiệt. | chapter thirty Spectral models for assessing exposure offish to contaminants Donald C. Malins Virginia M. Green Naomi K. Gilman and Katie M. Anderson Pacific Northwest Research Institute John J. Stegeman Woods Hole Oceanographic Institution Contents Introduction Materials required Tissues Supplies and equipment for DNA extraction Supplies and equipment for FT-IR spectral analysis Procedures DNA extraction FT-IR spectroscopy Other considerations Statistical analyses FT-IR mean spectra Principal components analysis DNA damage index Results and discussion Comparison of mean DNA spectra Principal components analysis DNA damage index Acknowledgments References Introduction Fourier transform-infrared FT-IR spectroscopy is capable of identifying a wide variety of chemical structures on the basis of their unique vibrational and rotational properties.1-3 DNA has a characteristic signature spectrum the peaks shoulders and other spectral properties of which have been identified by spectroscopists as corresponding to specific structures in the DNA molecule.1 In addition statistical models of FT-IR spectra have the Copyright 2005 by Taylor Francis remarkable ability to reveal subtle changes in complex cellular structures resulting from various biological and chemical stresses.3 4 Recent examples include the ability to discriminate with high sensitivity and specificity between the DNA of healthy and cancerous prostate tissues thus providing a basis for predicting the probability of prostate cancer.5 Furthermore the unique ability of the FT-IR statistical models to differentiate between diverse groups of tissues was evident when it was shown that primary prostate tumors could be readily distinguished from metastasizing primary tumors. This achievement was the basis for statistical models for predicting which tumors are most likely metastasizing without having to wait for metastatic cells to be detected at distant sites in the body e.g. the groin at which point treatment options .