Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
One of the important consequences of the mere existence of this formula is the following. Suppose that g is the Lie algebra of a Lie group G. Then the local structure of G near the identity, i.e. the rule for the product of two elements of G sufficiently closed to the identity is determined by its Lie algebra g. Indeed, the exponential map is locally a diffeomorphism from a neighborhood of the origin in g onto a neighborhood W of the identity, and if U ⊂ W is a (possibly smaller) neighborhood of the identity such that U · U ⊂ W, the the product of a. | Lie algebras Shlomo Sternberg April 23 2004 2 Contents 1 The Campbell Baker Hausdorff Formula 7 1.1 The problem. 7 1.2 The geometric version of the CBH formula. 8 1.3 The Maurer-Cartan equations. 11 1.4 Proof of CBH from Maurer-Cartan. 14 1.5 The differential of the exponential and its inverse. 15 1.6 The averaging method. 16 1.7 The Euler MacLaurin Formula. 18 1.8 The universal enveloping algebra. 19 1.8.1 Tensor product of vector spaces. 20 1.8.2 The tensor product of two algebras. 21 1.8.3 The tensor algebra of a vector space. 21 1.8.4 Construction of the universal enveloping algebra. 22 1.8.5 Extension of a Lie algebra homomorphism to its universal enveloping algebra. 22 1.8.6 Universal enveloping algebra of a direct sum. 22 1.8.7 Bialgebra structure. 23 1.9 The Poincare-Birkhoff-Witt Theorem. 24 1.10 Primitives. 28 1.11 Free Lie algebras . 29 1.11.1 Magmas and free magmas on a set . 29 1.11.2 The Free Lie Algebra Lx. 30 1.11.3 The free associative algebra Ass X . 31 1.12 Algebraic proof of CBH and explicit formulas. 32 1.12.1 Abstract version of CBH and its algebraic proof. 32 1.12.2 Explicit formula for CBH. 32 2 sl 2 and its Representations. 35 2.1 Low dimensional Lie algebras. 35 2.2 sl 2 and its irreducible representations. 36 2.3 The Casimir element. . 39 2.4 sl 2 is simple. 40 2.5 Complete reducibility. 41 2.6 The Weyl group. 42