Đang chuẩn bị liên kết để tải về tài liệu:
Đề tài " The best constant for the centered Hardy-Littlewood maximal inequality"

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

We find the exact value of the best possible constant C for the weak-type (1, 1) inequality for the one-dimensional centered Hardy-Littlewood maximal operator. We prove that C is the largest root of the quadratic equation 12C 2 − 22C + 5 = 0 thus obtaining C = 1.5675208 . . . . This is the first time the best constant for one of the fundamental inequalities satisfied by a centered maximal operator is precisely evaluated. | Annals of Mathematics The best constant for the centered Hardy-Littlewood maximal inequality By Antonios D. Melas Annals of Mathematics 157 2003 647 688 The best constant for the centered Hardy-Littlewood maximal inequality By Antonios D. Melas Abstract We find the exact value of the best possible constant C for the weak-type 1 1 inequality for the one-dimensional centered Hardy-Littlewood maximal operator. We prove that C is the largest root of the quadratic equation 12C2 22C 5 0 thus obtaining C 1.5675208. . This is the first time the best constant for one of the fundamental inequalities satisfied by a centered maximal operator is precisely evaluated. 1. Introduction Maximal operators play a central role in the theory of differentiation of functions and also in Complex and Harmonic Analysis. In general one considers a certain collection of sets C in Rn and then given any locally integrable function f at each x one measures the maximal average value of f with respect to the collection C translated by x. Then it is of fundamental importance to obtain certain regularity properties of this operators such as weak-type inequalities or Lp-boundedness. These properties are well known if C for example consists of all aD where a 0 is arbritrary and D c Rra is a fixed bounded convex set containing 0 in its interior. Such maximal operators are usually called centered. However little is known about the deeper properties of centered maximal operators even in the simplest cases. And one way to acquire such a deeper understanding is to start asking for the best constants in the corresponding inequalities satisfied by them. In this direction let us mention the result of E. M. Stein and J.-O. Stromberg 13 where certain upper bounds are given for such constants in the case of centered maximal operators as described above and the corresponding still open question raised there see also 3 Problem 7.74b on whether the best constant in the weak-type 1 1 inequality for certain centered .

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.