Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Lý thuyết trò chơi là một nhánh của Toán học ứng dụng. Ngành này nghiên cứu các tình huống chiến thuật trong đó các đối thủ lựa chọn các hành động khác nhau để cố gắng làm tối đa kết quả nhận được. Ban đầu được phát triển như là một công cụ để nghiên cứu hành vi kinh tế học, ngày nay Lý thuyết trò chơi được sử dụng trong nhiều ngành khoa học, từ Sinh học tới Triết học. | CHƯƠNG 4. LÝ THUYẾT TRÒ CHƠI ÁP DỤNG TRONG KINH TẾ I. MỘT SỐ KHÁI NIỆM II. TRÒ CHƠI MA TRẬN III. LÝ THUYẾT TRÒ CHƠI DƯỚI DẠNG QHTT IV. CHIẾN LƯỢC TỪNG BƯỚC VÀ PHƯƠNG PHÁP BROWN CHƯƠNG 4. LÝ THUYẾT TRÒ CHƠI ÁP DỤNG TRONG KINH TẾ Tài liệu tham khảo: Robert Gibbons, “Game Theory for Applied Economists”, Princeton University Press, 1992 Game Theory at Work: How to Use Game Theory to Outthink and Outmaneuver Your Competitionby James Miller, McGraw-Hill, 2003 Khái niệm về lý thuyết trò chơi Lý thuyết trò chơi là lý thuyết toán học mô tả và giải quyết các tình thế đối kháng. Một số ví dụ có liên quan đến áp dụng lý thuyết trò chơi là: - Chơi cờ, chơi bài, xổ số - Thi đấu thể thao - Chiến thuật, chiến lược trong quân sự - Cạnh tranh kinh tế của các doanh nghiệp với nhau hoặc chiến lược sản xuất khi nghiên cứu thị trường tiêu thụ. Khái niệm về lý thuyết trò chơi Qua các thí dụ trên ta có thể nhận thấy rằng: mỗi cuộc chơi có thể là: - Cuộc chơi giữa 2 đối thủ - Cuộc chơi giữa n đối thủ - Cuộc chơi có vô hạn đối thủ Hơn nữa, mỗi cuộc chơi đều có thể là - Cuộc chơi đối kháng khi quyền lợi giữa các bên tham gia hoàn toàn trái ngược nhau, thắng lợi của mỗi người dẫn tới tổn thất của ít nhất 1 người khác - Cuộc chơi không hoàn toàn đối kháng, nếu một nhóm trong số những người chơi có lợi ích chung ngoài lợi ích riêng. Trò chơi liên hiệp Là trò chơi mà trong đó hành động của những người chơi hướng tới cực đại hoá lợi ích (thắng lợi) của tập thể (liên hiệp), không tính đến việc phân tích thắng lợi giữa những người tham gia. Ví dụ trò chơi kéo co. Trò chơi không liên hiệp Là trò chơi mà mục đích của mỗi thành viên là thu về cho bản thân thắng lợi càng lớn càng tốt. Đây là trò chơi thường thấy trong thực tế. Ví dụ trong kinh doanh: Các doanh nghiệp cạnh tranh nhau để xuất khẩu hàng hoá; cạnh tranh thị phần Chiến lược của người chơi Là một tập hợp các qui tắc, các chọn lựa được xác định duy nhất trong hành vi của mỗi người chơi ở mỗi bước chơi, phụ thuộc vào mỗi trạng thái xẩy . | CHƯƠNG 4. LÝ THUYẾT TRÒ CHƠI ÁP DỤNG TRONG KINH TẾ I. MỘT SỐ KHÁI NIỆM II. TRÒ CHƠI MA TRẬN III. LÝ THUYẾT TRÒ CHƠI DƯỚI DẠNG QHTT IV. CHIẾN LƯỢC TỪNG BƯỚC VÀ PHƯƠNG PHÁP BROWN CHƯƠNG 4. LÝ THUYẾT TRÒ CHƠI ÁP DỤNG TRONG KINH TẾ Tài liệu tham khảo: Robert Gibbons, “Game Theory for Applied Economists”, Princeton University Press, 1992 Game Theory at Work: How to Use Game Theory to Outthink and Outmaneuver Your Competitionby James Miller, McGraw-Hill, 2003 Khái niệm về lý thuyết trò chơi Lý thuyết trò chơi là lý thuyết toán học mô tả và giải quyết các tình thế đối kháng. Một số ví dụ có liên quan đến áp dụng lý thuyết trò chơi là: - Chơi cờ, chơi bài, xổ số - Thi đấu thể thao - Chiến thuật, chiến lược trong quân sự - Cạnh tranh kinh tế của các doanh nghiệp với nhau hoặc chiến lược sản xuất khi nghiên cứu thị trường tiêu thụ. Khái niệm về lý thuyết trò chơi Qua các thí dụ trên ta có thể nhận thấy rằng: mỗi cuộc chơi có thể là: - Cuộc chơi giữa 2 đối thủ - Cuộc chơi giữa n đối thủ -