Đang chuẩn bị liên kết để tải về tài liệu:
Fundamentals, Surgical Techniques, and Complications - part 4

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Ánh sáng nổi lên từ mắt là tập trung vào một máy ảnh CCD mỗi lenslet để tạo thành một mô hình điểm. Các mô hình tại chỗ của một đối tượng lý tưởng với một đầu sóng hoàn hảo sẽ được chính xác cùng một khuôn mẫu như lưới tham khảo. | 142 Maeda Figure 9.5 Spot patterns in normal subject. ray of lenslets that consist of a matrix of small lenses 2 6 . The light emerging from the eye is focused on a CCD camera by each lenslet to form a spot pattern. The spot pattern of an ideal subject with a perfect wavefront will be exactly the same pattern as the reference grid. The spot pattern of a subject with a distorted wavefront will create an irregular spot pattern. Displacements of lenslet images from their reference position are used to calculate the shape of the wavefront. Figures 9.5 and 9.6 show examples of spot patterns from a normal and a keratoconic subject with the Topcon Hartmann-Shack sensor. Although the spot pattern in the normal subject is regular the spot pattern in the patient with keratoconus is markedly distorted. As the wavefront of each lenslet is perpendicular to the direction of the ray i.e. displacement Figure 9.6 Spot patterns in keratoconus. Copyright Marcel Dekker Inc. All rights reserved. Marcel Dekker Inc. 270 Madison Avenue New York New York 10016 Wavefront Technology and LASIK Applications 143 Y Z_ R r X n-2m 6 X sin when n-2m 0 cos when n-2m 0 to 1 s m-s n-m-s r Figure 9.7 Equation of Zernike polynomials. of their focusing spots the wavefront of the measured subjects can be reconstructed from these spot patterns. Wavefront aberrations the quantitative measure of wavefront distortions are usually calculated using Zernike polynomials. The wavefront is expanded into sets of Zernike polynomials to extract the characteristic components of the wavefront. The Zernike polynomials are the combination of trigonometric functions and radial functions and the terms of the Zernike polynomials represented as Z Fig. 9.7 are useful to show the wavefront aberrations because of their orthogonality 2 . Examples of Zernike polynomials up to the fourth order are shown in Fig. 9.8. The zero order has one term that represents a constant. The first order represents tilt two terms one for the X axis

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.