Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Department of Mathematic dành cho các bạn yêu thích môn toán học đề tài: Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variables. | Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variables Francois Bergeron LaCIM Universite du Quebec a Montreal Montreal Quebec H3C 3P8 CANADA bergeron.francois@uqam.ca Aaron Lauve Department of Mathematics Texas A M University College Station TX 77843 USA lauve@math.tamu.edu Submitted Oct 2 2009 Accepted Nov 26 2010 Published Dec 10 2010 Mathematics Subject Classification 05E05 Abstract We analyze the structure of the algebra K x Sn of symmetric polynomials in non-commuting variables in so far as it relates to K x Sn its commutative counterpart. Using the place-action of the symmetric group we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of K x Sn analogous to the classical theorems of Chevalley Shephard-Todd on finite reflection groups. Resume. Nous analysons la structure de l algebre K x Sn des polynomes syme-triques en des variables non-commutatives pour obtenir des analogues des resultats classiques concernant la structure de l anneau K x Sn des polynômes symetriques en des variables commutatives. Plus precisement au moyen de Faction par positions on realise K x Sn comme sous-module de K x Sn. On decouvre alors une nouvelle decomposition de K x Sn comme produit tensorial obtenant ainsi un analogues des theoremes classiques de Chevalley et Shephard-Todd. 1 Introduction One of the more striking results of invariant theory is certainly the following if W is a finite group of n X n matrices over some field K containing Q then there is a W-module decomposition of the polynomial ring S K x in variables x xi X2 . xn as a tensor product S Sw Sw 1 F. Bergeron is supported by NSERC-Canada and FQRNT-Quebec. THE ELECTRONIC JOURNAL OF COMBINATORICS 17 2010 R166 1 if and only if W is a group generated by pseudo reflections. As usual S is afforded a natural W-module structure by considering it as the symmetric space on the defining vector space X for W .