Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tham khảo tài liệu 'xử lý tín hiệu-chương 3', kỹ thuật - công nghệ, điện - điện tử phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Chương III Chương 3---------------------------------- PHÂN TÍCH HỆ RỜI RẠC LTI DÙNG PHÉP BIẾN ĐỔI Z Phép biến đổi Z là một công cụ quan trọng trong việc phân tích hệ rời rạc LTI. Trong chương này ta sẽ tìm hiểu về phép biến đổi Z các tính chất và ứng dụng của nó vào việc phân tích hệ rời rạc LTI. Nội dung chính chương này là - Phép biến đổi Z - Phép biến đổi Z ngược - Các tính chất của phép biến đổi Z - Phân tích hệ rời rạc LTI dựa vào hàm truyền đạt - Ưng dụng biến đổi Z để giải phương trình sai phân 2.1 PHÉP BIẾN ĐỔI Z Z-Transform Phép biến đổi Z là bản sao rời rạc hóa của phép biến đổi Laplace. w st Laplace transform F s I f t e dt -w w z-transform F z X f n z- n -w Thật vậy xét tín hiệu liên tục f t và lấy mẫu nó ta được w w f t f t X sự - nT X f nT S t -nT n -w n -w Biến đổi Laplace của tín hiệu lấy mẫu còn gọi là rời rạc là cw L f. t X f nT s t - nT J-w w estdt yi f nT ỗ t-nT eTstdt J-w n -w w w w w Xf nT w - nT e- dt X f nT e - snT n -w Cho f n f nT và z esT ta có w F z X f n z- n -w w F z lz esT X f n e-STn n -w w X f nT esnT n -w L fs t Như vậy biến đổi Z với z esT chính là biến đổi Laplace của tín hiệu rời rạc. 3.1.1 Định nghĩa phép biến đổi Z - 50 - Chương III Như vừa trình bày trên phép biến đổi Z hai phía bilateral Z-Transform của h n là H z Z h n ị h n z-n n - n Ta cũng có định nghĩa phép biến đổi Z một phía unilateral Z-transform là H z ị h n z --. n 0 Phép biến đổi Z hai phía được dùng cho tất cả tín hiệu cả nhân quả và không nhân quả. Theo định nghĩa trên ta thấy X z là một chuỗi luỹ thừa vô hạn nên chỉ tồn tại đối với các giá trị z mà tại đó X z hội tụ. Tập các biến z mà tại đó X z hội tụ gọi là miền hội tụ của X z -ký hiệu là ROC Region of Convergence . Ta sẽ thấy có thể có những tín hiệu khác nhau nhưng có biến đổi Z trùng nhau. Điểm khác biệt ở đây chính là miền hội tụ. Ta cần lưu ý đến hai khái niệm liên quan đến biến đổi Z- đó là điểm không zero và điểm cực pole . Điểm không là điểm mà tại đó X z 0 và điểm cực là điểm mà tại đó X z ro. Do ROC