Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tham khảo tài liệu 'motion control theory needed in the implementation of practical robotic systems 2 part 4', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Chapter 3 The State of the Motor Control Industry S-curves Many of the familiar concepts of position and velocity control are based on the assumption of linear compensators and motors. An unignorable nonlinearity of motor control systems is their limited velocity and limited available torque. In a linear model a change in velocity can be made arbitrarily fast by increasing the compensator gains indefinitely. In an actual system the current will quickly reach a saturation point. A system can be tuned to operate in its linear region most of the time and display a linear response. However the goal of the servo system designer is often to minimize transient times and transient times are often minimized by sending a fully saturated torque request and using all the torque available. These two viewpoints are illustrated in Figure 3.7. The same change in a velocity setpoint has been sent to the velocity request of two motor control systems one tuned to operate in the linear region and one tuned to utilize saturation effects. From the linear viewpoint the ideal response is the critically damped response on the left. This response is produced by the smoothly decaying torque below. From the non-linear viewpoint the ideal response on the right has used the full current available for the entire transient and reached the new setpoint in a finite time. The velocity responses of both systems in Figure 3.7 have the same initial slope corresponding to an identical maximum acceleration. If the gains of the linear system are increased the torque curve will start to saturate and the velocity response will have constant acceleration for longer and longer parts of the move. However the gains will have to be increased indefinitely to approach the response of the nonlinear system. The problems with very high gains and alternative methods of achieving the same response will be discussed later. Though both system have the same maximum acceleration they do not have the same jerk. Jerk is the