Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Hồi quy đa biến 1. Biết được phương pháp ước lượng bình phương nhỏ nhất để ước lượng hàm hồi quy đa biến tổng thể dựa trên số liệu mẫu | CHƯƠNG 3 HỒI QUY ĐA BIẾN Biết được phương pháp ước lượng bình phương nhỏ nhất để ước lượng hàm hồi quy đa biến tổng thể dựa trên số liệu mẫu Hiểu các cách kiểm định những giả thiết MỤC TIÊU HỒI QUY ĐA BIẾN NỘI DUNG Mô hình hồi quy 3 biến 1 Mô hình hồi quy k biến 2 5 3 Dự báo Mô hình hồi quy tổng thể PRF Ý nghĩa: PRF cho biết trung bình có điều kiện của Y với điều kiện đã biết các giá trị cố định của biến X2 và X3. Y: biến phụ thuộc X2 và X3: biến độc lập β1 : hệ số tự do β2 , β3 : hệ số hồi quy riêng 3.1 Mô hình hồi quy 3 biến Ý nghĩa hệ số hồi quy riêng: cho biết ảnh hưởng của từng biến độc lập lên giá trị trung bình của biến phụ thuộc khi các biến còn lại được giữ không đổi. Mô hình hồi quy tổng thể ngẫu nhiên: ui: sai số ngẫu nhiên của tổng thể 3.1 Mô hình hồi quy 3 biến Các giả thiết của mô hình Giá trị trung bình của Ui bằng 0 E(Ui /X2i, X3i)=0 2. Phương sai của các Ui là không đổi Var(Ui)=σ2 3. Không có hiện tượng tự tương quan giữa các Ui Cov(Ui . | CHƯƠNG 3 HỒI QUY ĐA BIẾN Biết được phương pháp ước lượng bình phương nhỏ nhất để ước lượng hàm hồi quy đa biến tổng thể dựa trên số liệu mẫu Hiểu các cách kiểm định những giả thiết MỤC TIÊU HỒI QUY ĐA BIẾN NỘI DUNG Mô hình hồi quy 3 biến 1 Mô hình hồi quy k biến 2 5 3 Dự báo Mô hình hồi quy tổng thể PRF Ý nghĩa: PRF cho biết trung bình có điều kiện của Y với điều kiện đã biết các giá trị cố định của biến X2 và X3. Y: biến phụ thuộc X2 và X3: biến độc lập β1 : hệ số tự do β2 , β3 : hệ số hồi quy riêng 3.1 Mô hình hồi quy 3 biến Ý nghĩa hệ số hồi quy riêng: cho biết ảnh hưởng của từng biến độc lập lên giá trị trung bình của biến phụ thuộc khi các biến còn lại được giữ không đổi. Mô hình hồi quy tổng thể ngẫu nhiên: ui: sai số ngẫu nhiên của tổng thể 3.1 Mô hình hồi quy 3 biến Các giả thiết của mô hình Giá trị trung bình của Ui bằng 0 E(Ui /X2i, X3i)=0 2. Phương sai của các Ui là không đổi Var(Ui)=σ2 3. Không có hiện tượng tự tương quan giữa các Ui Cov(Ui ,Uj )=0; i≠j 4. Không có hiện tượng cộng tuyến giữa X2 và X3 5.Ui có phân phối chuẩn: Ui ̴ N(0, σ2 ) Hàm hồi quy mẫu: sai số của mẫu ứng với quan sát thứ i 3.1.1 Ước lượng các tham số Sử dụng phương pháp bình phương nhỏ nhất để ước lượng các tham số 3.1.1 Ước lượng các tham số 3.1.1 Ước lượng các tham số 3.1.2 Phương sai của các ước lượng σ2 là phương sai của ui chưa biết nên dùng ước lượng không chệch: Hệ số xác định R2 Mô hình hồi quy 3 biến Hệ số xác định hiệu chỉnh Với k là tham số của mô hình, kể cả hệ số tự do Hệ số xác định Dùng để xét việc đưa thêm 1 biến vào mô hình. Biến mới đưa vào mô hình phải thỏa 2 điều kiện: - Làm tăng - Hệ số hồi quy biến mới thêm vào mô hình khác 0 có ý nghĩa Hệ số xác định hiệu chỉnh Với mức ý nghĩa hay độ tin cậy 1- 3.1.4 Khoảng tin cậy Với 1. Kiểm định giả thiết H0: B1. Tính B2. Nguyên tắc quyết định Nếu |ti | > t(n-3, /2): bác bỏ H0 Nếu |ti | ≤ t(n-3, /2) : chấp nhận H0 3.1.5 Kiểm định giả thiết 2. Kiểm .