Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tham khảo tài liệu 'đề thi thử đại học lần thứ i sở giáo dục đào tạo năm 2011 môn toán – mã đề 04', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ I SỞ GIÁO DỤC ĐÀO TẠO NĂM 2011 MÔN TOÁN - MÃ ĐỀ 04 Thời gian làm bài 180 phút-không kể thời gian phát đề PHẦN CHUNG CHO TẮT CẢ CÁC THÍ SINH Câu I 2 điểm 1 .Khảo sát sự biến thiên và vẽ đồ thị C của hàm số y - . Tìm điểm thuộc C cách đều x - 2 2 đường tiệm cận . 2 .Tìm các giá trị của m để phương trình sau có 2 nghiệm trên đoạn 0 3 sin3x sinx . - sin 2x cos2x v 1 cos2x 6.__6__Z . 4 4 X sin x cos x m sin x cos x Câu II 2 điểm 1 .Tìm các nghiệm trên 2 của phương trình 2 .Giải phương trình 3x 34 3x 3 1 Câu III 1 điểm Cho chóp S.ABC có đáy ABC là tam giác vuông tại C AC 2 BC 4. Cạnh bên SA 5 vuông góc với đáy. Gọi D là trung điểm cạnh AB. 1 .Tính góc giữa AC và SD 2 .Tính khoảng cách giữa BC và SD. Câu IV 2 điểm 2 I sinx cosx 1 1 -Tính tích phân I sinx 2cosx 3 2 . a.Giải phương trình sau trên tập số phức C z - iz 1 - 2i b.Hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thoả mãn 1 z - 1 2 PHẦN Tự CHỌN Thí sinh chọn câu V.a hoặc câu V.b Câu V.a. 2 điểm Theo chương trình Chuẩn 1 .Viết phương trình các cạnh của tam giác ABC biết B 2 -1 đường cao và đường phân giác trong qua đỉnh A C lần lượt là d1 3x - 4y 27 0 và d2 x 2y - 5 0 2 . Trong không gian với hệ tọa độ Oxyz cho các đường thẳng í x 1 x 3u d1 -Ịy 4 2t và d2 y 3 2u z 2 z 3 1 a. Chứng minh rằng d1 và d2 chéo nhau. b. Viết phương trình mặt cầu S có đường kính là đoạn vuông góc chung của d1 và d2 . 3 . Một hộp chứa 30 bi trắng 7 bi đỏ và 15 bi xanh . Một hộp khác chứa 10 bi trắng 6 bi đỏ và 9 bi xanh . Lấy ngẫu nhiên từ mỗi hộp bi một viên bi . Tìm xác suất để 2 bi lấy ra cùng màu . Câu V.b. 2 điểm Theo chương trình Nâng cao 1 .Trong mặt phẳng với hệ tọa độ Đềcác vuông góc Oxy xét tam giác ABC vuông tại A phương trình đường thẳng BC là V3 x - y - V3 0 các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếptam giác ABC bằng 2 . Tìm tọa độ trọng tâm G của tam giác ABC . x t 2 .Cho đường thẳng d y 1 và 2 mp P x 2y 2z 3 0 và Q x 2y 2z 7 0 z t a. Viết .