Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học:Perfect Matching Preservers

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

A subset M E(G) of the edge set E(G) of a graph G is called a matching provided that no two edges in M have a vertex in common. A perfect matching M is a matching with the property that each vertex of G is incident with an edge in M. For k a positive integer, a graph G is k-extendable provided that G has a matching of size k and every matching in G of size at most k can be extended to a perfect matching in G. | Perfect Matching Preservers Richard A. Brualdi Department of Mathematics University of Wisconsin - Madison Madison WI 53706 USA brualdi@math.wisc.edu Martin Loebl Department of Applied Mathematics Institute for Theoretical Computer Science Charles University Malostranske namesti 25 118 00 Prague Czech Republic loebl@kam.mff.cuni.cz Ondrej Pangrac Department of Applied Mathematics Institute for Theoretical Computer Science Charles University Malostranske namesti 25 118 00 Prague Czech Republic pangrac@kam.mff.cuni.cz Submitted Nov 15 2004 Accepted Oct 19 2006 Published Oct 31 2006 AMS Subject Classification 05C20 05C50 05C70 Abstract For two bipartite graphs G and G a bijection p E G E G0 is called a perfect matching preserver provided that M is a perfect matching in G if and only if p M is a perfect matching in G . We characterize bipartite graphs G and G0 which are related by a matching preserver and the matching preservers between them. Supported by Ministry of Education of Czech Republic as project LN00A056. THE ELECTRONIC JOURNAL OF COMBINATORICS 13 2006 R95 1 1 Introduction A subset M c E G of the edge set E G of a graph G is called a matching provided that no two edges in M have a vertex in common. A perfect matching M is a matching with the property that each vertex of G is incident with an edge in M. For k a positive integer a graph G is k-extendable provided that G has a matching of size k and every matching in G of size at most k can be extended to a perfect matching in G. In this paper we characterize the bipartite graphs G and G0 that are related by a matching preserver and so with appropriate labeling of edges have the same perfect matchings. We will achieve this by a full description of matching preservers defined as follows A bijection f E G E G0 is matching preserving or is a matching preserver provided that M is a perfect matching in G if and only if f M is a perfect matching in G0. Matching preservers for bipartite graphs G were investigated in 2

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.