Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo sinh học: " Research Article A Multifactor Extension of Linear Discriminant Analysis for Face Recognition under Varying Pose and Illumination"

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Tuyển tập các báo cáo nghiên cứu về sinh học được đăng trên tạp chí sinh học Journal of Biology đề tài: Research Article A Multifactor Extension of Linear Discriminant Analysis for Face Recognition under Varying Pose and Illumination | Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume 2010 Article ID 158395 11 pages doi 10.1155 2010 158395 Research Article A Multifactor Extension of Linear Discriminant Analysis for Face Recognition under Varying Pose and Illumination Sung Won Park and Marios Savvides Electrical and Computer Engineering Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA Correspondence should be addressed to Sung Won Park sungwonp@cmu.edu Received 11 December 2009 Revised 27 April 2010 Accepted 20 May 2010 Academic Editor Robert W. Ives Copyright 2010 S. W. Park and M. Savvides. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. Linear Discriminant Analysis LDA and Multilinear Principal Component Analysis MPCA are leading subspace methods for achieving dimension reduction based on supervised learning. Both LDA and MPCA use class labels of data samples to calculate subspaces onto which these samples are projected. Furthermore both methods have been successfully applied to face recognition. Although LDA and MPCA share common goals and methodologies in previous research they have been applied separately and independently. In this paper we propose an extension of LDA to multiple factor frameworks. Our proposed method Multifactor Discriminant Analysis aims to obtain multilinear projections that maximize the between-class scatter while minimizing the withinclass scatter which is the same core fundamental objective of LDA. Moreover Multifactor Discriminant Analysis MDA like MPCA uses multifactor analysis and calculates subject parameters that represent the characteristics of subjects and are invariant to other changes such as viewpoints or lighting conditions. In this way our proposed MDA combines the best virtues of both LDA and MPCA for face recognition. 1. .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.