Đang chuẩn bị liên kết để tải về tài liệu:
SAS/ETS 9.22 User's Guide 98

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

SAS/Ets 9.22 User's Guide 98. Provides detailed reference material for using SAS/ETS software and guides you through the analysis and forecasting of features such as univariate and multivariate time series, cross-sectional time series, seasonal adjustments, multiequational nonlinear models, discrete choice models, limited dependent variable models, portfolio analysis, and generation of financial reports, with introductory and advanced examples for each procedure. You can also find complete information about two easy-to-use point-and-click applications: the Time Series Forecasting System, for automatic and interactive time series modeling and forecasting, and the Investment Analysis System, for time-value of money analysis of a variety of investments | 962 F Chapter 17 The MDC Procedure AIC -2 ln L 2 k SBC 2 ln L ln n k where ln L is the log-likelihood value for the model k is the number of parameters estimated and n is the number of observations that is the number of respondents . Tests on Parameters In general the hypothesis to be tested can be written as Ho h h 0 where h h is an r-by-1 vector-valued function of the parameters h given by the r expressions specified in the TEST statement. Let V be the estimate of the covariance matrix of h. Let h be the unconstrained estimate of h and h be the constrained estimate of h such that h h 0. Let A h dh h dh g Using this notation the test statistics for the three kinds of tests are computed as follows The Wald test statistic is defined as W h h A h VA h 1h h The Wald test is not invariant to reparameterization of the model Gregory and Veall 1985 Gallant 1987 p. 219 . For more information about the theoretical properties of the Wald test see Phillips and Park 1988 . The Lagrange multiplier test statistic is LM k A h V A h k where k is the vector of Lagrange multipliers from the computation of the restricted estimate h. The likelihood ratio test statistic is LR 2 L h - L h where h represents the constrained estimate of h and L is the concentrated log-likelihood value. OUTEST Data Set F 963 For each kind of test under the null hypothesis the test statistic is asymptotically distributed as a X2 random variable with r degrees of freedom where r is the number of expressions in the TEST statement. The p-values reported for the tests are computed from the x2 r distribution and are only asymptotically valid. Monte Carlo simulations suggest that the asymptotic distribution of the Wald test is a poorer approximation to its small sample distribution than that of the other two tests. However the Wald test has the lowest computational cost since it does not require computation of the constrained estimate 9. The following statements are an example of using the TEST statement to .

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.