Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Đề 2 toán chuyên toán KHTN, nhằm giúp các bạn có cách nhìn toàn diện về kiến thức và kĩ năng cần nắm vững trước khi kỳ thi sắp tơi với tâm thế vững vàng nhất. Tác giả hi vọng tài liệu này sẽ là tài liệu bổ ích cho các em, tài liệu mang tính chất tham khảo | Free Download w Eboothere.vn Khối chuyên Toán - Tin trường ĐHKHTN-ĐHQGHN Đề thi thử đại học lần 2 nam 2008-2009 Ngày thi 15 3 2009 Thời gian 180 phút. Typeset by ATEX2 . Copyright 2009 by Nguyễn Mạnh Dũng. Email nguyendunghus@gmail.com. Mathematical blog http www.mathlinks.ro weblog.php w 1139 1 1 Đề bài Câu I 2 điểm 1 Khảo sát và vẽ đồ thị C của hàm số 2x2 3x 3 y -----x 1 2 Tìm các điểm thuộc C cách đều hai tiệm cận. Câu II 2 điểm 1 Giải phương trình lượng giác 9 sin3 x V3cos x sin x cos x cosx V3 sin x 6 sin x 0 2 Tìm a để với mọi b hệ phương trình sau có nghiệm í a 1 x5 y5 1 Ị ebx a 1 by4 a2 Câu III 2 điểm 1 Tính thể tích khối tròn xoay nhận được do quay quanh trục Oy hình phẳng hữu hạn được giới hạn bởi các đường y2 x và 3y x 2. 2 Tính tổng sau theo n a r _ V 2 1 V 1 97r 6 _1_. 1 _ X nc 2n S C2n 3C2n 1 9C2n 27C2n 1 3 C2n Câu IV 3 điểm 1 Trong không gian với hệ tọa độ Đề các vuông góc Oxyz cho hai đường thẳng dì d2 có phương trình tham số x 1 t x 2t di y t d2 y 1 t z t z t a Viết phương trình các mặt phẳng P Q song song với nhau và lần lượt đi qua d1 d2 . b Chứng minh rằng hai đường thẳng di d2 chéo nhau. Tính khoảng cách giữa hai đường thẳng đó. 2 Gọi I là tâm đường tròn nội tiếp tam giác ABC R và r lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp tam giác đó. Chứng minh rằng IA.IB.IC 4Rr2 Câu V 1 điểm . Cho a b c là ba số thực dương thay đổi thỏa mãn điều kiện a b c ự3. Tìm giá trị nhỏ nhất của P ựa2 ab b2 ựb2 bc c2 ực2 ca a2 2 2 Lời giải tóm tắt Câu I. 1 Điểm cực tiểu 0 3 điểm cực đại 2 5 . Tiệm cận đứng x 1 tiệm cận xiên y 2x 1. Bạn đọc tự vẽ đồ thị 2 Xét điểm M xo 2xo 1 x2-ĩ là một điểm thuộc đồ thị hàm số. Điểm M cách đều hai tiệm cận khi và chỉ khi x 0 1 2xo 2xo 1 x0 2 Ị 1 p p5 hay x0 1 2 yĩ x0 1 yi Vậy các điểm cần tìm là các điểm thuộc C và có hoành độ x 1 4. Câu II. 1 Phương trình đã cho tương đương với sin3x V3 cos x sin x cos x cosx V3 sin x 2 3 sin x 4 sin3 x sin x ĩ sin 3x x 3 3x k2ĩ x 3 ĩ 3x l2ĩ x ĩ kĩ 3 2 k l 2 Z. 2 Hệ đã cho có nghiệm với