Đang chuẩn bị liên kết để tải về tài liệu:
XỬ LÝ TÍN HIỆU SỐ (Chương 4+5)

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Xét một ví dụ về lăng kính khi cho ánh sáng trắng đi qua (có thể coi là tín hiệu trên miền thời gian) ta sẽ thu được các vạch phổ tương ứng với các thành phần tần số của ánh sáng: đỏ, da cam, vàng.Nhận xét: cùng một sự vật hiên tượng nếu quan sát ở những vị trí, góc độ khác nhau ta sẽ thu được các thông tin khác nhau về sự vật hiện tượng đó. | XỬ LÝ TÍN HIỆU SỐ Khoa KTMT Chương 4 Tín hiệu và hệ thống LTI trong miền tần số Nội dung chính: Giới thiệu miền tần số Biến đổi Fourier đối với tín hiệu rời rạc Hệ LTI trong miền tần số Giới thiệu miền tần số Xét một ví dụ về lăng kính khi cho ánh sáng trắng đi qua (có thể coi là tín hiệu trên miền thời gian) ta sẽ thu được các vạch phổ tương ứng với các thành phần tần số của ánh sáng: đỏ, da cam, vàng. Nhận xét: cùng một sự vật hiên tượng nếu quan sát ở những vị trí, góc độ khác nhau ta sẽ thu được các thông tin khác nhau về sự vật hiện tượng đó. Phép biến đổi Fourier với tín hiệu rời rạc Cho tín hiệu rời rạc x(n), phép biến đổi Fourier của x(n) được định nghĩa như sau: Như vậy phép biến đổi Fourier đã chuyển tín hiệu x(n) từ miền thời gian sang miền tần số ω (hay tần số f = ω/2π). Chúng ta sẽ dùng ký hiệu sau để mô tả phép biến đổi Fourier của tín hiệu x(n) Các phương pháp biểu diễn X(ejω) Biểu diễn dưới dạng phần thực và phần ảo Bởi vì X(ejω) là một hàm biến phức nên ta có thể biểu diễn nó trong miền tần số ω dưới dạng phần thực và phần ảo như biểu thức dưới đây: : là phần thực của X(ejω) : là phần ảo của X(ejω) Các phương pháp biểu diễn X(ejω) Biểu diễn dưới dạng biên độ và pha X(ejω) làm một hàm biến số phức vậy ta có thể biểu diễn nó dưới dạng module và argument như sau: |X(ejω)|: được gọi là phổ biên độ của x(n) arg(X(ejω)): được gọi là phổ pha của x(n) Ta có quan hệ sau: Phổ biên độ và phổ pha |X(f)|: Phổ biên độ, arg[X(f)]: Phổ pha h(n) H(ejw) F F-1 đáp ứng xung đáp ứng tần số x(n) X(ejw) F F-1 tín hiệu phổ Sự tồn tại của phép biến đổi Fourier Phép biến đổi Fourier hội tụ khi và chỉ khi x(n) thoả mãn điều kiện: Từ đó suy ra Nói cách khác phép biến đổi Fourier luôn hội tụ với các tín hiệu có năng lượng hữu hạn. Phép biến đổi Fourier ngược Định lý: Mặt khác ta xét công thức biến đổi Fourier Áp dụng định lý nêu trên vào đẳng thức cuối cùng ta có được: Đây chính là công thức biến đổi Fourier ngược, cho phép chuyển tín hiệu từ miền tần số về miền thời . | XỬ LÝ TÍN HIỆU SỐ Khoa KTMT Chương 4 Tín hiệu và hệ thống LTI trong miền tần số Nội dung chính: Giới thiệu miền tần số Biến đổi Fourier đối với tín hiệu rời rạc Hệ LTI trong miền tần số Giới thiệu miền tần số Xét một ví dụ về lăng kính khi cho ánh sáng trắng đi qua (có thể coi là tín hiệu trên miền thời gian) ta sẽ thu được các vạch phổ tương ứng với các thành phần tần số của ánh sáng: đỏ, da cam, vàng. Nhận xét: cùng một sự vật hiên tượng nếu quan sát ở những vị trí, góc độ khác nhau ta sẽ thu được các thông tin khác nhau về sự vật hiện tượng đó. Phép biến đổi Fourier với tín hiệu rời rạc Cho tín hiệu rời rạc x(n), phép biến đổi Fourier của x(n) được định nghĩa như sau: Như vậy phép biến đổi Fourier đã chuyển tín hiệu x(n) từ miền thời gian sang miền tần số ω (hay tần số f = ω/2π). Chúng ta sẽ dùng ký hiệu sau để mô tả phép biến đổi Fourier của tín hiệu x(n) Các phương pháp biểu diễn X(ejω) Biểu diễn dưới dạng phần thực và phần ảo Bởi vì X(ejω) là một hàm biến phức nên ta có .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.