Đang chuẩn bị liên kết để tải về tài liệu:
Seismic Isolation and Supplemental Energy Dissipation

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Seismic Isolation and Supplemental Energy Dissipation 41.1 41.2 Introduction Basic Concepts, Modeling, and Analysis Earthquake Response Spectrum Analysis • Structural Dynamic Response Modifications • Modeling of Seismically Isolated Structures • Effect of Energy Dissipation on Structural Dynamic Response 41 41.3 Seismic Isolation and Energy Dissipation Devices Elastomeric Isolators • Sliding Isolators • Viscous Fluid Dampers • Viscoelastic Dampers • Other Types of Damping Devices 41.4 Performance and Testing Requirments Seismic Isolation Devices • Testing of Energy Dissipation Devices. | Zhang R. Seismic Isolation and Supplemental Energy Dissipation. Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton CRC Press 2000 41 Seismic Isolation and Supplemental Energy Dissipation 41.1 41.2 41.3 41.4 41.5 41.6 Rihui Zhang California State Department of Transportation 41.7 Introduction Basic Concepts Modeling and Analysis Earthquake Response Spectrum Analysis Structural Dynamic Response Modifications Modeling of Seismically Isolated Structures Effect of Energy Dissipation on Structural Dynamic Response Seismic Isolation and Energy Dissipation Devices Elastomeric Isolators Sliding Isolators Viscous Fluid Dampers Viscoelastic Dampers Other Types of Damping Devices Performance and Testing Requirments Seismic Isolation Devices Testing of Energy Dissipation Devices Design Guidelines and Design Examples Seismic Isolation Design Specifications and Examples Guidelines for Energy Dissipation Devices Design Recent Developments and Applications Practical Applications of Seismic Isolation Applications of Energy Dissipation Devices to Bridges Summary 41.1 Introduction Strong earthquakes impart substantial amounts of energy into structures and may cause the structures to deform excessively or even collapse. In order for structures to survive they must have the capability to dissipate this input energy through either their inherent damping mechanism or inelastic deformation. This issue of energy dissipation becomes even more acute for bridge structures because most bridges especially long-span bridges possess very low inherent damping usually less than 5 of critical. When these structures are subjected to strong earthquake motions excessive deformations can occur by relying on only inherent damping and inelastic deformation. For bridges designed mainly for gravity and service loads excessive deformation leads to severe damage or even collapse. In the instances of major bridge crossings as was the case of the San Francisco-Oakland 2000 by CRC Press LLC .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.