Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tài liệu tham khảo dành cho giáo viên, học sinh chuyên môn toán - Đề thi chọn học sinh giỏi khối 9 năm 2007 - 2008. | Phòng GD ĐỀ THI CHỌN HỌC SINH GIỎỈ KHỐI 9 Trường THCS Môn: Toán - Năm học: 2007-2008 Thời gian:120 phút(Không kể thời gian giao đề) Bài 1:(2.0điểm) Với x, y không âm, tìm giá trị nhỏ nhất của biểu thức: P = x - Bài 2:(2,0diểm) Chứng minh rằng: biểu thức sau có giá trị không phụ thuộc vào x ( với x 0 ) Bài 3:(2,0điểm) Bằng đồ thị, hãy biện luận số nghiệm của phương trình: Bài 4:(4điểm) Cho hai nửa đường tròn ( O ) và ( O’ ) tiếp xúc ngoài ở A. Tiếp tuyến chung ngoài TT’có tiếp điểm với đường tròn ( O ) ở T với đường tròn ( O’ ) ở T’, Cắt đường tròn nối tâm OO’ ở S. Tiếp tuyến chung trong tại A của hai nửa đường tròn cắt TT’ ở M a) Tính độ dài AM theo các bán kính của hai đường tròn ( O )và ( O’ ). b) Chứng minh: SO.SO’ = SM2 ST.ST’ = SA2 c) Chứng minh rằng đường tròn ngoại tiếp TAT’ tiếp xúc với OO’ tại A và đường tròn ngoại tiếp OMO’tiếp xúc với SM tại M Phòng ĐÁP ÁN ĐỀ THI HỌC SINH GIỎI KHỐI Trường THCS Môn Toán – Năm học 2007-2008 Thời gian:120 phút(Không kể thời gian giao đề) Bài 1 (2,0đ) Bài 2: (2,0đ) Bài 3: (2,0đ) *Xét ba trường hợp: Với x 0 thì y = -x – x +1 = -2x + 1 Với 0 1 thì phương trình có 2 nghiệm . ( 1 điểm ) Bài 4: (4 điểm ) b) Chứng minh: SO’M ~ SMO suy ra: ( 1 điểm ) SAT~ ST’A suy ra: ( 1 điểm ) c) MA = MT = MT’ nên MA là bán kính đường tròn ngoại tiếp TAT’ và OO’ MA tại A. Do đó đường tròn ngoại tiếp TAT’ tiếp xúc với OO’ tại A. ( 0,5 điểm ) Gọi M’ là trung điểm của OO’ thì M’M//OT SM M’M ở M mà M’M là bán kính đường tròn ngoại tiếp OMO’. Do đó đường tròn ngoại tiếp OMO’ tiếp xúc với SM tại M ( 0,5 điểm )