Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
" Đề và đáp án luyện thi đại học 2010 khối A-B-C-D đề 9 " nhằm giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các đề ôn thi một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình. Các bạn nên ôn tập kiến thức trước khi làm bài. Sau khi làm bài, sử dụng đáp án để tìm hiểu phương pháp trình bày bài, tự đánh giá mức. | Trung tâm BDVH LTĐH QUANG MINH Đề số 9 ĐẼ THI THƯ ĐẠI HỌC VA CAO ĐẢNG NĂM 2010 Môn thi TOÁN Thời gian 180 phút không kể thời gian phát đề I. PHẦN CHUNG 7 điểm X A 2m - 1 x - m2 Câu I 2 điểm Cho hàm sô y --- 1. 1 Khảo sát sự biến thiên và vẽ đồ thị C của hàm sô khi m -1. 2 Tìm m để đồ thị của hàm sô tiếp xúc với đường thẳng y x . Câu II 2 điểm 1 Giải phương trình 2 Giải hệ phương trình 2 -a s cos2x sin 2x 4cos2 3x 2 2 2xy x y --- - 1 í x y x y x2 - y p Câu III 1 điểm Tính tích phân I 0-----sinx----dx 0 sin x cos x 3 Câu IV 1 điểm Cho hình lăng trụ tam giác ABC.A B C có đáy là tam giác đều cạnh bằng a A M 1 ABC A M 23 M là trung điểm cạnh BC . Tính thể tích khối đa diện ABA B C. Câu V 1 điểm Cho các số thực x y. Tìm giá trị nhỏ nhất của biểu thức P ựx2 y2 - 4y 4 ựx2 y2 4y 4 x - 4 II. PHẦN TỰ CHỌN 3 điểm 1. Theo chương trình chuẩn Câu VI.a 2 điểm 1 Trong mặt phẳng với hệ toạ độ Oxy cho elip E 1x00 25 1. Tìm các điểm M e E sao cho 1- MF2 1200 F1 F2 là hai tiêu điểm của E . 2 Trong không gian với hệ toạ độ Oxyz cho 3 điểm A 3 1 1 B 7 3 9 C 2 2 2 và mặt phẳng P có phương 1 1 trình x y z 3 0 . Tìm trên P điểm M sao cho MA 2MB 3MC nhỏ nhất. Câu VII.a 1 điểm Gọi ữj a2 . an là các hệ số trong khai triển sau x 1 10 x 2 x11 ố x11 2x9 . 11. Tìm hệ số a5. 2. Theo chương trình nâng cao Câu VI.b 2 điểm 1 Trong mặt phẳng với hệ toạ độ Oxy cho đường tròn C x - 3 2 y - 4 2 35 và điểm A 5 5 . Tìm trên C hai điểm B C sao cho tam giác ABC vuông cân tại A. 2 Trong không gian với hệ toạ độ Oxyz cho điểm M 2 1 2 và đường thẳng d x y z 1 3 . Tìm trên d hai điểm A B sao cho tam giác ABM đều. Câu VII.b 1 điểm Giải hệ phương trình log20i0I 1 x -2 y I 3 3 x y 2 2 x y l xy Trần Sĩ Tùng I. PHẦN CHUNG Hướng dẫn Câu I 2 TXĐ D R 1 . Để đồ thị tiếp xúc với đường thẳng y x thì 2m 1 x - m2 í m - x- 1 I x 1 2 Từ ta có m -1 2 x -1 2 x m x 2 - m Với x m thay vào ta được 0m 0 thoả với mọi m . Vì x 1 nên m 1. Với x 2 - m thay vào ta được 2m -1 2 - m - m2 2 - m 2 - m -1 4 m -1 2 0 m 1 m 1 x 1 loại Vậy