Đang chuẩn bị liên kết để tải về tài liệu:
Queueing mạng lưới và chuỗi Markov P3

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Steady-State Solutions of Markov Chains In this chapter, we restrict ourselves to the computation of the steady-state probability vector’ of ergo&c Markov chains. Most of the literature on solution techniques of Markov chains assumes ergodicity of the underlying model. A comprehensive source on algorithms for steady-state solution techniques is the book by Stewart [Stew94]. From Eq. (2.15) and Eq. (2.58), we have v = VP and 0 = nQ, respectively, as points of departure for the study of steady-state solution techniques. Eq. (2.15) can be transformed so that: 0 = Y(P -1). Therefore, both for CTMC and DTMC, a linear system. | Queueing Networks and Markov Chains Gunter Botch Stefan Greiner Hermann de Meer Kishor S. Trivedi Copyright 1998 John Wiley Sons Inc. Print ISBN 0-471-19366-6 Online ISBN 0-471-20058-1 fi K n 1 VsbN Steady-State Solutions of Markov Chains In this chapter we restrict ourselves to the computation of the steady-state probability vector1 of ergodic Markov chains. Most of the literature on solution techniques of Markov chains assumes ergodicity of the underlying model. A comprehensive source on algorithms for steady-state solution techniques is the book by Stewart Stew94 . From Eq. 2.15 and Eq. 2.58 we have v vP and 0 ttQ respectively as points of departure for the study of steady-state solution techniques. Eq. 2.15 can be transformed so that 0 i P-I . 3.1 Therefore both for CTMC and DTMC a linear system of the form 0 xA 3-2 needs to be solved. Due to its type of entries representing the parameters of a Markov chain matrix A is singular and it can be shown that A is of rank n - 1 for any Markov chain of size S n. It follows immediately that the resulting set of equations is not linearly independent and that one of the equations is redundant. To yield a unique positive solution we must impose a normalization condition on the solution x of equation 0 xA. One way to approach the solution of Eq. 3.2 is to directly incorporate the normalization condition xl 1 3.3 xFor the sake of convenience we sometimes use the term steady-state analysis as a shorthand notation. 103 104 STEADY-STATE SOLUTIONS OF MARKOV CHAINS into the Eq. 3.2 . This can be regarded as substituting one of the columns say the last column of matrix A by the unit vector 1 1 1 . 1 T. With a slight abuse of notation we denote the new matrix also by A. The resulting linear system of non-homogeneous equations is b xA b 0 0 . 0 1 . 3.4 An alternative to solving Eq. 3.2 is to separately consider normalization Eq. 3.3 as an additional step in numerical computations. We demonstrate both ways when example studies are .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.