Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Bài báo này nghiên cứu và đánh giá hiệu quả của hai kĩ thuật nâng cao chất lượng tín hiệu tiếng nói trong môi trường nhiễu tiếng vang. Phương pháp thứ nhất loại bỏ thành phần phổ tiếng vang bằng cách trừ giá trị trung bình ước lượng của logarit của phổ tần số. Phương pháp thứ hai thực hiện | Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010 NGHIÊN CỨU CÁC THUẬT TÓAN MỜ ĐỂ GIẢM NHIỄU TIẾNG VANG TRONG MIỀN PHỔ NHẰM NÂNG CAO CHẤT LƯỢNG TIẾNG NÓI STUDY ON SPECTRAL-BASED BLIND DEREVERBERATION ALGORITHMS FOR SPEECH ENHANCEMENT SVTH Nguyễn Thị Phương Mai Trần Thủy Nguyên Đỗ Thị Hoàng Yến Lớp 05DT1 2 Khoa Điện tử Viễn thông Trường Đại học Bách khoa GVHD TS. Phạm Văn Tuấn Khoa Điện tử Viễn thông Trường Đại họcBách khoa TÓM TẮT Bài báo này nghiên cứu và đánh giá hiệu quả của hai kĩ thuật nâng cao chất lượng tín hiệu tiếng nói trong môi trường nhiễu tiếng vang. Phương pháp thứ nhất loại bỏ thành phần phổ tiếng vang bằng cách trừ giá trị trung bình ước lượng của logarit của phổ tần số. Phương pháp thứ hai thực hiện việc ước lượng hằng số thời gian của nhiễu tiếng vang ở các băng tần số khác nhau rồi xây dựng mặt nạ loại bỏ phần nhiễu tiếng vang. Các thuật toán này được kiểm tra trên cơ sở dữ liệu tiếng nói tiếng Việt. Kết quả đánh giá khách quan cho thấy hai thuật tóan trên đều nâng cao chất lượng tiếng nói bị nhiễu tiếng vang. Thuật tóan mặt nạ nhìn chung cho tín hiệu ra có chất lượng tốt hơn và ổn định hơn. Hiệu quả của thuật toán thể hiện rõ ở vùng nhiễu tiếng vang xa. ABSTRACT The objective of this paper is performance assessment of two techniques for speech enhancement in reverberant environment. The estimation of clean signal is done by subtracting the mean of logarithm of spectrum in the spectral subtraction algorithm while in the masking algorithm T60 of acoustic channel is estimated and part of the signal dominated largely by reverberation is then removed. The algorithms are tested on a Vietnamese speech corpus. The objective evaluation results show that these two algorithms improve speech quality and intelligibility of degraded signal. In general the making method performs better than mean subtraction in sense of speech quality improvement. The efficiency of blind technique is more obvious in far field. 1. Giới .