Đang chuẩn bị liên kết để tải về tài liệu:
Lecture Data Structures: Lesson 32

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Lecture Data Structures: Lesson 32 provide students with knowledge about heap code in C++; buildheap in linear time; how buildHeap a linear time algorithm; complete binary tree; marking the left edges for height 1 nodes; marking the first left edge and the subsequent right edge for height 2 nodes; . | Heap code in C template void Heap deleteMin eType amp minItem if isEmpty cout Lecture No.32 Data Structure Dr. Sohail Aslam Heap code in C hole is the index at which the percolate begins. template void Heap percolateDown int hole int child eType tmp array hole for hole 2 Heap code in C template const eType amp Heap getMin if isEmpty return array 1 template void Heap buildHeap eType anArray int n for int i 1 i 0 i- percolateDown i Heap code in C template bool Heap isEmpty return currentSize 0 template bool Heap isFull return currentSize capacity template int Heap getSize return currentSize BuildHeap in Linear Time How is buildHeap a linear time algorithm I.e. better than Nlog2N We need to show that the sum of heights is a linear function of N number of nodes . Theorem For a perfect binary tree of height h containing 2h 1 1 nodes the sum of the heights of nodes is 2h 1 1 h 1 or N h 1. BuildHeap in Linear Time It is easy to see that this tree consists of 20 node at height h 21 nodes at height h 1 22 at h 2 and in general 2i nodes at h i. Complete Binary Tree A h 20 nodes B C h -1 21 nodes D E F G h -2 22 nodes H I J K L M N O h -3 23 nodes BuildHeap in Linear Time The sum of the heights of all the nodes is then S 2 h i for i 0 to h 1 i h 2 h 1 4 h 2 8 h 3 . 2h 1 1 Multiplying by 2 gives the equation 2S 2h 4 h 1 8 h 2 16 h 3 . 2h 2 Subtract the two equations to get S -h 2 4 8 16 . 2h 1 2h 2h 1 1 h 1 Which proves the theorem. BuildHeap in Linear Time Since a complete binary tree has between 2h and 2h 1 nodes S 2h 1 1 h 1 N - log2 N 1 Clearly as N gets larger the log2 N 1 term becomes insignificant and S becomes a function of N. BuildHeap in Linear Time Another way to prove the theorem. The height of a node in the tree the number of edges on the longest downward path to a leaf The height of a tree the height of its root For any node in the tree that has some height h darken h tree edges Go down tree by traversing left edge then only right edges There are N 1 tree edges

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.