Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tumor stroma interaction is known to take a crucial role in cancer growth and progression. In the present study, it was performed gene expression analysis of stroma samples with ovarian and breast cancer through an integrative analysis framework to identify common critical biomolecules at multiomics levels. Gene expression datasets were statistically analyzed to identify common differentially expressed genes (DEGs) by comparing tumor stroma and normal stroma samples. The integrative analyses of DEGs indicated that there were 59 common core genes, which might be feasible to be potential marks for cancer stroma targeted strategies. Reporter molecules (i.e. receptor, transcription factors and miRNAs) were determined through a statistical test employing the hypergeometric probability density function. |