Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Bài viết này đề xuất một tiếp cận mới trong khai thác mẫu tuần tự có trọng số bằng việc kết hợp giá trị trọng số thực của các item trong cơ sở dữ liệu chuỗi cùng với độ hỗ trợ của chúng để tìm ra tập mẫu phổ biến có giá trị hơn. Hơn nữa, thuật toán đề xuất sử dụng phương pháp tiếp cận dữ liệu theo chiều dọc nên thuật toán chỉ cần duyệt cơ sỡ dữ liệu một lần, do đó tiết kiệm được thời gian thực thi. Mời các bạn cùng tham khảo! | Tạp chí Khoa học và Công nghệ Số 45A 2020 MỘT THUẬT TOÁN HIỆU QUẢ CHO BÀI TOÁN KHAI THÁC MẪU TUẦN TỰ VỚI RÀNG BUỘC TRỌNG SỐ PHẠM THỊ THIẾT Khoa Công Nghệ Thông Tin Trường Đại học Công nghiệp Thành phố Hồ Chí Minh phamthithiet@iuh.edu.vn Tóm tắt. Khai thác mẫu tuần tự có trọng số giúp tìm ra các mẫu có giá trị cao hơn nên có thể được áp dụng trong nhiều lĩnh vực hơn đồng thời giải quyết một số khó khăn về không gian lưu trữ và tài nguyên thực hiện trong bài toán khai thác mẫu tuần tự với độ hỗ trợ min_sup thấp. Bài báo đề xuất một tiếp cận mới trong khai thác mẫu tuần tự có trọng số bằng việc kết hợp giá trị trọng số thực của các item trong cơ sở dữ liệu chuỗi cùng với độ hỗ trợ của chúng để tìm ra tập mẫu phổ biến có giá trị hơn. Hơn nữa thuật toán đề xuất sử dụng phương pháp tiếp cận dữ liệu theo chiều dọc nên thuật toán chỉ cần duyệt cơ sỡ dữ liệu một lần do đó tiết kiệm được thời gian thực thi. Bên cạnh đó để tăng hiệu suất tính toán thuật toán áp dụng mã hóa khối nguyên tố trong các bước tính toán của quá trình phát triển mẫu. Kết quả thực nghiệm cho thấy thuật toán đề xuất có thời gian thực thi hiệu quả hơn. Từ khóa. mẫu tuần tự mẫu tuần tự có ràng buộc trọng số CSDLchuỗi. AN EFFICIENT ALGORITHM FOR MINING WEIGHTED SEQUENTIAL PATTERNS Abstract. Mining weighted sequential patterns is to find higher-value patterns and these patterns can be applied in more fields and at the same time it addresses some of the storage and resource limitations in the problem of mining sequential patterns with the low min_sup support. The paper proposes a new approach for mining weighted sequential patterns by combining the actual weight values of items in the sequence database with their support to find higher-value sequential patterns set. Moreover the proposed algorithm uses a vertical database approach so the algorithm only needs to scan the database once thus saving execution time. In addition to increase computational efficiency the algorithm applies the prime block encoding .