Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Bài giảng "Lập và phân tích dự án cho kỹ sư - Chương 2: Giá trị theo thời gian của tiền tệ" cung cấp cho người học các kiến thức: Tính toán lãi tức, biểu đồ dòng tiền tệ (CFD), các công thức tính giá trị tương đương cho các dòng tiền tệ đơn và phân bố đều, . Mời các bạn cùng tham khảo. | Bài giảng Lập và phân tích dự án cho kỹ sư Project planning and analysis for engineers Chương 2 - Nguyễn Ngọc Bình Phương Chương 2 GIÁ TRỊ THEO THỜI GIAN CỦA TIỀN TỆ Nguyễn Ngọc Bình Phương nnbphuong@hcmut.edu.vn Khoa Quản lý Công nghiệp Đại học Bách Khoa TP.HCM Nội dung 1. Tính toán lãi tức 2. Biểu đồ dòng tiền tệ CFD 3. Các công thức tính giá trị tương đương cho các dòng tiền tệ đơn và phân bố đều 4. Lãi suất danh nghĩa và lãi suất thực Không học Các công thức tính giá trị tương đương cho các dòng tiền tệ phân bố không đều amp Các công thức tính giá trị tương đương khi ghép lãi liên tục 2 Tính toán lãi tức Lãi tức interest là biểu hiện giá trị theo thời gian của tiền tệ. Lãi tức Tổng vốn tích luỹ Vốn đầu tư ban đầu Lãi suất interest rate là lãi tức biểu thị theo tỷ lệ phần trăm đối với số vốn ban đầu cho một đơn vị thời gian Lãi suất Lãi tức trong 1 đơn vị thời gian Vốn gốc x 100 3 Tính toán lãi tức Sự tương đương về mặt kinh tế economic equivalence Những số tiền khác nhau ở những thời điểm khác nhau có thể bằng nhau về giá trị kinh tế. Với lãi suất 10 năm 1 triệu hôm nay tương đương 1 1 triệu năm sau. F - future Nếu gửi tiết kiệm P đồng hôm nay trong n thời đoạn với lãi suất i thì sẽ có F gt P đồng 0 cuối thời đoạn n. n P - present 4 Tính toán lãi tức Lãi tức đơn simple interest Lãi tức chỉ tính theo số vốn gốc mà không tính thêm lãi tức tích luỹ phát sinh từ tiền lãi ở các thời đoạn trước đó. Lãi tức ghép compound interest Lãi tức ở mỗi thời đoạn được tính theo số vốn gốc và cả tổng số tiền lãi tích luỹ được trong các thời đoạn trước đó. Phản ánh được hiệu quả giá trị theo thời gian của đồng tiền cho cả phần tiền lãi trước đó. Thường được sử dụng trong thực tế. 5 Tính toán lãi tức Lãi tức đơn Với lãi suất đơn i số thời đoạn là n tổng vốn lẫn lãi sau n thời đoạn là P I với I P.i.n Số dư P số vốn gốc Số dư Năm Lãi tức cuối đầu năm i lãi suất đơn năm n số thời đoạn 0 1.000 Ví dụ 1 1.000 80 1.080 P 1.000 2 1.080 80 1.160 i 8 n 3 năm 3 1.160 80 1.240 6 Tính toán .