Đang chuẩn bị liên kết để tải về tài liệu:
Feature extraction and optimized support vector machine for severity fault diagnosis in ball bearing

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

In this paper, a method for severity fault diagnosis of ball bearings is presented. The method is based on wavelet packet transform (WPT), statistical parameters, principal component analysis (PCA) and support vector machine (SVM). The key to bearing faults diagnosis is features extraction. | Feature extraction and optimized support vector machine for severity fault diagnosis in ball bearing Engineering Solid Mechanics 4 2016 167-176 Contents lists available at GrowingScience Engineering Solid Mechanics homepage www.GrowingScience.com esm Feature extraction and optimized support vector machine for severity fault diagnosis in ball bearing Tawfik Thelaidjiaabc Abdelkrim Moussaouib and Salah Chenikherc a Department of Electrical Engineering and Automatic. University of 08 Mai 1985 Guelma University Algeria b Laboratory of Electrical Engineering of Guelma Guelma University Algeria c Laboratory of Electrical Engineering LABGET Tebessa University. Algeria A R T I C L EI N F O ABSTRACT Article history In this paper a method for severity fault diagnosis of ball bearings is presented. The method is Received 6 March 2016 based on wavelet packet transform WPT statistical parameters principal component analysis Accepted 30 June 2016 PCA and support vector machine SVM . The key to bearing faults diagnosis is features Available online extraction. Hence the proposed technique consists of preprocessing the bearing fault vibration 30 June 2016 Keywords signal using statistical parameters and energy obtained through the application of Db8- WPT Fault Diagnosis at the third level of decomposition. After feature extraction from vibration signal PCA is Particle Swarm Optimization with employed for dimensionality reduction. Finally particle swarm optimization with passive Passive Congregation congregation-based support vector machine is used to classify seven kinds of bearing faults. Principal Component Analysis The classification results indicate the effectiveness of the proposed method for severity faults Statistical Parameters diagnosis in ball bearings. Support Vector Machine Wavelet Packet Transform 2016 Growing Science Ltd. All rights reserved. 1. Introduction Rotating machinery is used in a wide variety of industrial applications including aircraft engines wind .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.