Đang chuẩn bị liên kết để tải về tài liệu:
Thiết kế mô hình mạng nơ ron nhân chập cho bài toán nhận dạng giới tính từ ảnh mặt người

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Trong bài viết này, nhóm tác giả tập trung vào việc thiết kế một mô hình mạng nơ ron nhân chập và kết hợp với việc áp dụng các kỹ thuật tăng cường dữ liệu để đưa ra một hệ thống giải quyết bài toán. | Thiết kế mô hình mạng nơ ron nhân chập cho bài toán nhận dạng giới tính từ ảnh mặt người CHÀO MỪNG KỶ NIỆM NGÀY NHÀ GIÁO VIỆT NAM 20/11 THIẾT KẾ MÔ HÌNH MẠNG NƠ RON NHÂN CHẬP CHO BÀI TOÁN NHẬN DẠNG GIỚI TÍNH TỪ ẢNH MẶT NGƯỜI DESIGNING A CONVOLUTIONAL NEURAL NETWORK FOR GENDER IDENTIFICATION FROM FACIAL IMAGES NGUYỄN HỮU TUÂN*, NGUYỄN VĂN THỦY Khoa Công nghệ Thông tin, Trường Đại học Hàng hải Việt Nam *Email liên hệ: huu-tuan.nguyen@vimaru.edu.vn Tóm tắt Giới tính là một trong những thông tin quan trọng và có ích có thể xác định từ ảnh mặt người. Các kỹ thuật áp dụng cho bài toán nhận dạng giới tính được công bố gần đây đều dựa trên các phương pháp học sâu và cho các kết quả cao hơn so với cách tiếp cận truyền thống dựa trên các đặc trưng cục bộ được trích chọn từ các thuật toán trích chọn đặc trưng từ ảnh. Trong bài báo này, nhóm tác giả tập trung vào việc thiết kế một mô hình mạng nơ ron nhân chập và kết hợp với việc áp dụng các kỹ thuật tăng cường dữ liệu để đưa ra một hệ thống giải quyết bài toán. Kết quả thực nghiệm thu được trên tập dữ liệu ảnh mặt người công cộng LFW cho thấy hệ thống đề xuất đạt được tỉ lệ chính xác cao (97,5%) và tương đương với các hệ thống đã được công bố. Từ khóa: Nhận dạng giới tính, học sâu, mạng nơ ron nhân chập, tăng cường dữ liệu, LFW. Abstract Gender is among the most important and useful information that can be identified from human facial images. Recent techniques for gender classification problem have been mostly based on deep learning methods and have gained higher results than conventional approaches which are relied on local features extracted from input pictures. In this paper, we focus on building a convolutional neural network and combine several data augmentation methods to build up a gender classification system. Obtained experimental results upon public face image database LFW show that our system achieves high accuracies (97.5%) and is compared with .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.