Đang chuẩn bị liên kết để tải về tài liệu:
Lecture Signals, systems & inference – Lecture 6: Modal solution of undriven CT LTI state-space models

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

The following will be discussed in this chapter: Glucose-insulin system, UVA/Padova model (FDA approved!), linearization at an equilibrium yields an LTI model, phase plane trajectories, complex eigenvalue pairs (CT case). | Lecture Signals, systems & inference – Lecture 6: Modal solution of undriven CT LTI state-space models Modal solution of undriven CT LTI state-space models 6.011, Spring 2018 Lec 6 1 Glucose-insulin system From Messori et al., IEEE Control Systems Magazine © IEEE. All rights reserved. This content is excluded from our 2 Creative Commons license. Feb 2018 For more information, see https://ocw.mit.edu/help/faq-fair-use/ UVA/Padova model (FDA approved!) From Messori et al., IEEE Control Systems Magazine © IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 3 Feb 2018 Linearization at an equilibrium yields an LTI model e , x(t) = x¯ + x(t) ¯ + q(t) CT case: q(t) = q e , q˙ (t) = f (q(t), x(t)) # h @f i h @f i e˙ q(t) ⇡ e + q(t) e x(t) @q ¯ ,x q ¯ @x ¯ ,x q ¯ e for small perturbations q(t) e and x(t) from equilibrium 4 Phase plane trajectories State trajectories for different initial conditions 5 4 [-6, 3.05] 3 2 1 [-3.2, 1.5] q2(t) 0 [2, -0.9] -1 -2 [4, -2.1] -3 -4 [8, -4] -5 5 -10 -8 -6 -4 -2 0 2 4 6 8 10 q1(t) Complex eigenvalue pairs (CT case) If Ai is a (complex) eigenvalue with eigenvector vi , then its complex conjugate A⇤i is also an eigenvalue, with associated eigenvector vi⇤ . Write i = i + j!i , vi = ui + jvi . Then the contribution of the complex pair to the modal solution is ⇤ ↵ i vi e it + ↵i⇤ vi⇤ e it = h i it Ki e ui cos(!i t + ✓i ) wi sin(!i t + ✓i ) 6 Acoustics and Vibration Animations Have fun exploring the animations created by Prof. Dan Russell, Penn State 7 MIT OpenCourseWare https://ocw.mit.edu 6.011 Signals, Systems and Inference Spring 2018 For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 8

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.