Đang chuẩn bị liên kết để tải về tài liệu:
Efficient algorithms for construction of recurrence relations for the expansion and connection coefficients in series of quantum classical orthogonal polynomials

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Formulae expressing explicitly the q-difference derivatives and the moments of the polynomials Pn(x ; q) ∈ T (T ={Pn(x ; q) ∈ Askey–Wilson polynomials: Al-Salam-Carlitz I, Discrete q-Hermite I, Little (Big) q-Laguerre, Little (Big) q-Jacobi, q-Hahn, Alternative q-Charlier) of any degree and for any order in terms of Pi(x ; q) themselves are proved. We will also provide two other interesting formulae to expand the coefficients of general-order q-difference derivatives Dp q f (x), and for the moments xDp q f (x), of an arbitrary function f(x) in terms of its original expansion coefficients. We used the underlying formulae to relate the coefficients of two different polynomial systems of basic hypergeometric orthogonal polynomials, belonging to the Askey–Wilson polynomials and Pn(x ; q) ∈ T. These formulae are useful in setting up the algebraic systems in the unknown coefficients, when applying the spectral methods for solving q-difference equations of any order. | Efficient algorithms for construction of recurrence relations for the expansion and connection coefficients in series of quantum classical orthogonal polynomials

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.