Đang chuẩn bị liên kết để tải về tài liệu:
Convergence of estimated optimal inventory levels in models with probabilistic demands

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

The behavior of estimations of the optimal inventory level is analyzed. Two models are studied. The demands follow unknown probability distribution function. The included density functions are estimated and a plug-in rule is suggested for computing estimates of the optimal levels. Two search algorithms are proposed and compared using Monte Carlo experiments. | Yugoslav Journal of Operations Research 13 (2003), Number 2, 217-227 CONVERGENCE OF ESTIMATED OPTIMAL INVENTORY LEVELS IN MODELS WITH PROBABILISTIC DEMANDS Carlos N. BOUZA Departamento de Matem‹tica Aplicada Facultad de Matem‹tica y Computaci†n Universidad de La Haban bouza@matcom.uh.cu Abstract: The behavior of estimations of the optimal inventory level is analyzed. Two models are studied. The demands follow unknown probability distribution function. The included density functions are estimated and a plug-in rule is suggested for computing estimates of the optimal levels. Two search algorithms are proposed and compared using Monte Carlo experiments. Keywords: Backorders, simulated annealing, density function estimation. 1. INTRODUCTION The inventory problems to be analyzed can be formulated as follows: "given set of demands of a certain number of periods, determine the parameters that implement a policy that ensures minimum costs at a long run". We start with an inventory and at every time period t we examine the inventory position. The set-up cost c( s) is associated to each placed order. A holding cost c( h) is incurred per unit-time in the inventory stock. The backordered cost c(b) is incurred per unit-time per backordered unit of demand. The cost of using a policy is a linear combination of set-up, holding and backordered costs. We can consider this problem deterministic or we can assume that we face probabilistic demands. The later case is more realistic though a percent of the demands can be considered non-random. For example, the demands of a large buyer can be similar in any period. The level of the product in the firm should be set to reserve sufficient inventory in order to meet the deterministic demand. It is known before the next replenish. This problem is analyzed in Section 3 following the results of Haussmann-Thomas (1972). Section 4 is devoted to the analysis of an inventory model where all the demands during the stock out period are backordered

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.