Đang chuẩn bị liên kết để tải về tài liệu:
Estimation of single leaf chlorophyll content in sugar beet using machine vision

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Estimating crop nitrogen status accurately during side-dressing operations is essential for effective management of site-specific nitrogen applications. Variable rate technology (VRT) is one of the major operations in precision agriculture to reduce environmental risks and increase fertilizer use efficiency. | P. A. MOGHADDAM, M. H. DERAFSHI, V. SHIRZAD Research Article Turk J Agric For 35 (2011) 563-568 © TÜBİTAK doi:10.3906/tar-0909-393 Estimation of single leaf chlorophyll content in sugar beet using machine vision Parviz Ahmadi MOGHADDAM1,*, Mohammadali Haddad DERAFSHI1, Vine SHIRZAD2 1 Department of Agricultural Machinery, Agricultural Faculty, Urmia University, Urmia - IRAN 2 Department of Plant Protection, Agricultural Faculty, Urmia University, Urmia - IRAN Received: 14.09.2009 Abstract: Estimating crop nitrogen status accurately during side-dressing operations is essential for effective management of site-specific nitrogen applications. Variable rate technology (VRT) is one of the major operations in precision agriculture to reduce environmental risks and increase fertilizer use efficiency. In the present study, color image analysis was performed to estimate sugar beet leaf chlorophyll status. The experiment was carried out in a phytotron and nitrogen was applied at 6 levels to the sugar beet grown in pots. Chlorophyll level of the leaves was measured by a SPAD-502 chlorophyll meter. To estimate chlorophyll status, a neural-network model was developed based on the RGB (red, green, and blue) components of the color image captured with a conventional digital camera. The results showed that the neural network model is capable of estimating the sugar beet leaf chlorophyll with a reasonable accuracy. The coefficient of determination (R2) and mean square error (MSE) between the estimated and the measured SPAD values, which were obtained from validation tests, appeared to be 0.94 and 0.006, respectively. Key words: Machine vision, neural network, chlorophyll, sugar beet, variable rate Introduction Nitrogen (N) is a nutrient critical to the growth of agricultural crops. Proper management of nitrogen application helps to reduce nitrogen losses and prevents pollution of underground and surface water, which leads to serious environmental problems (Noh et al. .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.