Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Mục tiêu của luận án là phát triển phương pháp lặp kết hợp với các phương pháp khác để thiết lập định tính và đặc biệt là phương pháp giải số một số bài toán biên hai điểm đối với phương trình và hệ phương trình vi phân phi tuyến cấp bốn nảy sinh trong lý thuyết uốn của dầm, trong đó không dùng đến điều kiện tăng trưởng tại vô cùng, điều kiện Nagumo. của hàm vế phải. | BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ .*** NGÔ THỊ KIM QUY PHƯƠNG PHÁP LẶP GIẢI BÀI TOÁN BIÊN HAI ĐIỂM CHO PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH VI PHÂN CẤP BỐN Chuyên ngành: Toán ứng dụng Mã số: 62 46 01 12 TÓM TẮT LUẬN ÁN TIẾN SĨ TOÁN HỌC Hà Nội – 2017 Công trình được hoàn thành tại: Học viện Khoa học và Công nghệ Viện Hàn lâm Khoa học và Công nghệ Việt Nam Người hướng dẫn khoa học 1: GS. TS. Đặng Quang Á Người hướng dẫn khoa học 2: PGS. TS. Hà Tiến Ngoạn Phản biện 1: Phản biện 2: Phản biện 3: . Luận án sẽ được bảo vệ trước Hội đồng chấm luận án tiến sĩ, họp tại Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam vào hồi giờ ’, ngày tháng năm 201 . Có thể tìm hiểu luận án tại: - Thư viện Học viện Khoa học và Công nghệ - Thư viện Quốc gia Việt Nam MỞ ĐẦU 1. Tính cấp thiết của luận án Nhiều bài toán trong vật lý, cơ học và một số lĩnh vực khác được mô tả bởi các phương trình và hệ phương trình vi phân với các điều kiện biên khác nhau. Có thể chia phương trình vi phân cấp bốn thành hai dạng: phương trình vi phân cấp bốn không đầy đủ và phương trình vi phân cấp bốn đầy đủ. Phương trình vi phân cấp bốn mà trong đó hàm vế phải chứa ẩn hàm và chứa đầy đủ các đạo hàm các cấp của nó (từ cấp một đến cấp ba) được gọi là phương trình vi phân cấp bốn đầy đủ. Ngược lại, phương trình được gọi là phương trình vi phân cấp bốn không đầy đủ. Bài toán biên đối với phương trình vi phân đã thu hút được sự quan tâm của các nhà khoa học như Alve, Amster, Bai, Li, Ma, Feng, Minhós, Một số nhà toán học và cơ học Việt Nam, như Đặng Quang Á, Phạm Kỳ Anh, Nguyễn Văn Đạo, Nguyễn Đông Anh, Lê Xuân Cận, Nguyễn Hữu Công, Lê Lương Tài, . cũng nghiên cứu các phương pháp giải bài toán biên cho phương trình vi phân. Trong số các phương trình vi phân thì phương trình vi phân phi tuyến cấp bốn được quan tâm rất nhiều trong thời gian gần đây vì nó là mô hình toán học của nhiều bài