Đang chuẩn bị liên kết để tải về tài liệu:
On the coherent state method in constructing representations of quantum superalgebras

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

In recent years, one of the new applications of the coherent state method was to construct representation of superalgebras and quantum superalgebras. Following this stream, we had a contribution to working out explicit representation of Uq[gl(2|1)]. Up to now, Uq[gl(2|1) is still the biggest quantum superalgebra representations in coherent state basis of which can be built. In this article, we will show some detailed techniques used in our previous work but useful for our further investigations. | Communications in Physics, Vol. 23, No. 1 (2013), pp. 29-37 ON THE COHERENT STATE METHOD IN CONSTRUCTING REPRESENTATIONS OF QUANTUM SUPERALGEBRAS NGUYEN CONG KIEN Institute of Physics, VAST NGUYEN ANH KY Institute of Physics, VAST and Laboratory for High Energy Physics and Cosmology, Faculty of Physics, College of Science, Vietnam National University, Hanoi Abstract. In recent years, one of the new applications of the coherent state method was to construct representation of superalgebras and quantum superalgebras. Following this stream, we had a contribution to working out explicit representation of Uq [gl(2|1)]. Up to now, Uq [gl(2|1) is still the biggest quantum superalgebra representations in coherent state basis of which can be built. In this article, we will show some detailed techniques used in our previous work but useful for our further investigations. The newest results on building representations in a coherent state basis of Uq [osp(2|2)], which has the same rank as Uq [gl(2|1)], are also briefly exposed. I. INTRODUCTION In the late 1920’s, the concept of coherent states (CS’s) was introduced by E. Schr¨odinger [1] while searching for a classical analog of quantum states of quantum harmonic oscillators. For more than 80 years, the concept of CS’s has been developed by many people, especially, a crutial step was made by A. Perelomov who generalized the CS concept for arbitrary Lie algebras [2–4]. This concept was also extended to that of vector coherent states (VCS’s) [5–9]. In 1970’s, the formation of supersymmetry (SUSY) led to the creation of a new research trend in physics and mathematics (although, presently, the SUSY phenomenological models are in a difficult time when the latest results of the LHC have not been able to confirm them). Combining with the SUSY idea, the concept of CS’s was developed to those of super coherent states (SCS’s) and supervector coherent states (SVCS’s) [10–14]. With special characteristics, CS’s are quantum states having

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.