Đang chuẩn bị liên kết để tải về tài liệu:
A modeling study with an artificial neural network: Developing estimation models for the tomato plant leaf area

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

The leaf area measurement is an important parameter in understanding the growth and physiology of a plant. Therefore, this study aimed to develop the best leaf area estimation model for tomato plants grown in plastic greenhouse conditions. | Turkish Journal of Agriculture and Forestry Turk J Agric For (2016) 40: 203-212 © TÜBİTAK doi:10.3906/tar-1408-28 http://journals.tubitak.gov.tr/agriculture/ Research Article A modeling study with an artificial neural network: developing estimation models for the tomato plant leaf area 1 1 2, 3 Hande KÜÇÜKÖNDER , Sedat BOYACI *, Adil AKYÜZ Department of Business Administration, Faculty of Economics and Administrative Sciences, Bartın University, Bartın, Turkey 2 Department of Biosystems Engineering, Ahi Evran University, Kırşehir, Turkey 3 Department of Biosystems Engineering, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey Received: 08.08.2014 Accepted/Published Online: 21.08.2015 Final Version: 05.02.2016 Abstract: The leaf area measurement is an important parameter in understanding the growth and physiology of a plant. Therefore, this study aimed to develop the best leaf area estimation model for tomato plants grown in plastic greenhouse conditions. The artificial neural network (ANN) and regression analysis techniques were used in the formation of a leaf area estimation model by using the leaf width and leaf length measurements determined by the linear measurement method. The plant material for the study consisted of 420 leaf samples of the Typhoon F1 tomato type grown in plastic greenhouse conditions. In the comparison of the created models according to both methods, the criteria of selecting low values for the root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE), and high value for the determination coefficient (R2) were taken into account, and the best estimation models were determined. In the comparison made according to these criteria, it was concluded that the error values of the ANN model [R2 = 0.96, RMSE = 3.30, MAE = 1.94, and MAPE = 0.05] were lower than those of the regression model [R2 = 0.92, RMSE = 4.71, MAE = 3.31, and MAPE = 0.08], and that the ANN method provided a .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.