Đang chuẩn bị liên kết để tải về tài liệu:
Lecture Data structures and algorithms in Java (6th edition): Chapter 13.3 - Goodrich, Tamassia, Goldwasser

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

This chapter provides knowledge of quick sort. Data structures and algorithms in java provides an introduction to data structures and algorithms, including their design, analysis, and implementation. | Quick-Sort 3/25/14 15:58 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 Quick-Sort 7 4 9 6 2 → 2 4 6 7 9 4 2 → 2 4 7 9 → 7 9 2→2 © 2014 Goodrich, Tamassia, Goldwasser 9→9 Quick-Sort 1 Quick-Sort ! Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm: n   x Divide: pick a random element x (called pivot) and partition S into w   L elements less than x w   E elements equal x x L E G w   G elements greater than x n   n   Recur: sort L and G Conquer: join L, E and G © 2014 Goodrich, Tamassia, Goldwasser Quick-Sort x 2 1 Quick-Sort 3/25/14 15:58 Partition ! We partition an input sequence as follows: n   n   We remove, in turn, each element y from S and We insert y into L, E or G, depending on the result of the comparison with the pivot x ! Each insertion and removal ! is at the beginning or at the end of a sequence, and hence takes O(1) time Thus, the partition step of quick-sort takes O(n) time © 2014 Goodrich, Tamassia, Goldwasser Algorithm partition(S, p) Input sequence S, position p of pivot Output subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp. L, E, G ← empty sequences x ← S.remove(p) while ¬S.isEmpty() y ← S.remove(S.first()) if y x } G.addLast(y) return L, E, G Quick-Sort 3 Java Implementation © 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 4 2 Quick-Sort 3/25/14 15:58 Quick-Sort Tree ! An execution of quick-sort is depicted by a binary tree n   Each node represents a recursive call of quick-sort and stores w   Unsorted sequence before the execution and its pivot w   Sorted sequence at the end of the execution n   n   The root is the initial call The leaves are calls on subsequences of size 0 or 1 7 4 9 6 2 → 2 4 6 7 9 4 2 → 2 4 7 9 → 7 9 2→2 9→9 © 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 5 Execution Example ! .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.