Đang chuẩn bị liên kết để tải về tài liệu:
A textbook of Computer Based Numerical and Statiscal Techniques part 11

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

A textbook of Computer Based Numerical and Statiscal Techniques part 11. By joining statistical analysis with computer-based numerical methods, this book bridges the gap between theory and practice with software-based examples, flow charts, and applications. Designed for engineering students as well as practicing engineers and scientists, the book has numerous examples with in-text solutions. | 86 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES x6 - 1.93375. Thus the approximation value to the root is -1.93375 correct up to five decimals. 2.9 METHODS FOR COMPLEX ROOTS We now consider methods for determining complex roots of non-linear equations. Even if all coefficients of a non-linear equation are real the equation can have complex roots. The iterative methods like the Secant method or the Newton-Raphson method are applicable to complex roots also provided complex arithmetic is used. Starting with the complex initial approximation if the iteration converges to a complex root then the asymptotic convergence rate is the same as that for a real root. The problem of finding a complex root off z 0 where z is a complex variable is equivalent to finding real values x and y such that f z f x iy u x y iv x y 0 Where u and v are real functions. This problem is equivalent to solving a system of two non-linear equations in two real unknowns x and y u x y 0 v x y 0 Which can be solved using the methods discussed in previous section. Example 6. Find all roots of the equation f x x3 2x2 - x 5 using Newton-Raphson method. Use initial approximations x0 - 3 for real root and x0 1 i for complex root. Sol. Given f x x3 2x2 - x 5 f x 3x2 4x - 1 Newton-Raphson formula is given by x x - fM -1 f x L For real root Taken initial approximation as x0 - 3. x _ IM 0 f xo L - 3 - IT x - fx 1 f x1 L First approximation Second approximation x1 x1 x2 - 2.928571429 x2 - 2.928571429 0.035349848 13.01530612 Third approximation x2 - 2.925855408 X3 x - fxl x2 - f x 87 ALGEBRAIC AND TRANSCENDENTAL EQUATION 0.000050045 x3 - 2.925855408 v 97846797 x3 - 2.925851552 Since the second and third approximations are same for five decimals hence the real root is -2.92585 correct up to five decimals. For complex root Initial approximation is x0 1 i First approximation x - X - fxl 1 0 f X0 1 i 3 2 1 i 2 - 1 i 5 X 1 i 1 3 1 i 4 1 i - 1 x1 53 1 114 0.486238 i 1.045871 1 109 Thus 0.486238 i 1.045871 is .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.